• Title/Summary/Keyword: U-Net model

Search Result 242, Processing Time 0.029 seconds

Basic characterization of uranium by high-resolution gamma spectroscopy

  • Choi, Hee-Dong;Kim, Junhyuck
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.929-936
    • /
    • 2018
  • A basic characterization of uranium samples was performed using gamma- and X-ray spectroscopy. The studied uranium samples were eight types of certified reference materials with $^{235}U$ enrichments in the range of 1-97%, and the measurements were performed over 24 h using a high-resolution and high-purity planar germanium detector. A general peak analysis of the spectrum and the $XK_{\alpha}$ region of the uranium spectra was carried out by using HyperGam and HyperGam-U, respectively. The standard reference sources were used to calibrate the spectroscopy system. To obtain the absolute detection efficiency, an effective solid angle code, EXVol, was run for each sample. Hence, the peak activities and isotopic activities were determined, and then, the total U content and $^{234}U$, $^{235}U$, and $^{238}U$ isotopic contents were determined and compared with those of the certified reference values. A new method to determine the model age based on the ratio of the activities of $^{223}Ra$ and $^{235}U$ in the sample was studied, and the model age was compared with the known true age. In summary, the present study developed a method for basic characterization of uranium samples by nondestructive gamma-ray spectrometry in 24 h and to obtain information on the sample age.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.

Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4 (농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가)

  • Cha, Sungeun;Won, Myoungsoo;Jang, Keunchang;Kim, Kyoungmin;Kim, Wonkook;Baek, Seungil;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1273-1283
    • /
    • 2022
  • Recently, forest fires have frequently occurred due to climate change, leading to human and property damage every year. The forest fire monitoring technique using remote sensing can obtain quick and large-scale information of fire-damaged areas. In this study, the Gangneung and Donghae forest fires that occurred in March 2022 were analyzed using the spectral band of Sentinel-2, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI) to classify the affected areas of forest fires. The U-net based convolutional neural networks (CNNs) model was simulated for the fire-damaged areas. The accuracy of forest fire classification in Donghae and Gangneung classification was high at 97.3% (f1=0.486, IoU=0.946). The same model used in Donghae and Gangneung was applied to Uljin and Samcheok areas to get rid of the possibility of overfitting often happen in machine learning. As a result, the portion of overlap with the forest fire damage area reported by the National Institute of Forest Science (NIFoS) was 74.4%, confirming a high level of accuracy even considering the uncertainty of the model. This study suggests that it is possible to quantitatively evaluate the classification of forest fire-damaged area using a spectral band and indices similar to that of the Compact Advanced Satellite 500 (CAS500-4) in the Sentinel-2.

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Cho, Woosung;Kim, Hyeonmin;Kim, Duckhyun;Kim, SongHyun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2229-2236
    • /
    • 2021
  • In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

A Study on Lung Cancer Segmentation Algorithm using Weighted Integration Loss on Volumetric Chest CT Image (흉부 볼륨 CT영상에서 Weighted Integration Loss을 이용한 폐암 분할 알고리즘 연구)

  • Jeong, Jin Gyo;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.625-632
    • /
    • 2020
  • In the diagnosis of lung cancer, the tumor size is measured by the longest diameter of the tumor in the entire slice of the CT. In order to accurately estimate the size of the tumor, it is better to measure the volume, but there are some limitations in calculating the volume in the clinic. In this study, we propose an algorithm to segment lung cancer by applying a custom loss function that combines focal loss and dice loss to a U-Net model that shows high performance in segmentation problems in chest CT images. The combination of values of the various parameters in custom loss function was compared to the results of the model learned. The purposed loss function showed F1 score of 88.77%, precision of 87.31%, recall of 90.30% and average precision of 0.827 at α=0.25, γ=4, β=0.7. The performance of the proposed custom loss function showed good performance in lung cancer segmentation.

Land Cover Classifier Using Coordinate Hash Encoder (좌표 해시 인코더를 활용한 토지피복 분류 모델)

  • Yongsun Yoon;Dongjae Kwon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1771-1777
    • /
    • 2023
  • With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.

A study on the application of the agricultural reservoir water level recognition model using CCTV image data (농업용 저수지 CCTV 영상자료 기반 수위 인식 모델 적용성 검토)

  • Kwon, Soon Ho;Ha, Changyong;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.245-259
    • /
    • 2023
  • The agricultural reservoir is a critical water supply system in South Korea, providing approximately 60% of the agricultural water demand. However, the reservoir faces several issues that jeopardize its efficient operation and management. To address this issues, we propose a novel deep-learning-based water level recognition model that uses CCTV image data to accurately estimate water levels in agricultural reservoirs. The model consists of three main parts: (1) dataset construction, (2) image segmentation using the U-Net algorithm, and (3) CCTV-based water level recognition using either CNN or ResNet. The model has been applied to two reservoirs G-reservoir and M-reservoir with observed CCTV image and water level time series data. The results show that the performance of the image segmentation model is superior, while the performance of the water level recognition model varies from 50 to 80% depending on water level classification criteria (i.e., classification guideline) and complexity of image data (i.e., variability of the image pixels). The performance of the model can be improved if more numbers of data can be collected.

Depth Control and Sweeping Depth Stability of the Midwater Trawl (중층트롤의 깊이바꿈과 소해심도의 안정성)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • For regulating the depth of midwater trawl nets towed at the optimum constant speed, the changes in the shape of warps caused by adding a weight on an arbitrary point of the warp of catenary shape is studied. The shape of a warp may be approximated by a catenary. The resultant inferences under this assumption were experimented. Accordingly feasibilities for the application of the result of this study to the midwater trawl nets were also discussed. A series of experiments for basic midwater trawl gear models in water tank and a couple of experiments of a commercial scale gears at sea which involve the properly designed depth control devices having a variable attitude horizontal wing were carried out. The results are summarized as follows: 1. According to the dimension analysis the depth y of a midwater trawl net is introduced by $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$) where k is a constant, L the warp length, f the function, and $W_r,\;W_o$ and $W_n$ the apparent weights of warp, otter board and the net, respectively, 2. When a boat is towing a body of apparent weight $W_n$ and its drag $D_n$ by means of a warp whose length L and apparent weight $W_r$ per unit length, the depth y of the body is given by the following equation, provided that the shape of a warp is a catenary and drag of the warp is neglected in comparison with the drag of the body: $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. The changes ${\Delta}y$ of the depth of the midwater trawl net caused by changing the warp length or adding a weight ${\Delta}W_n$_n to the net, are given by the following equations: $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 4. A change ${\Delta}y$ of the depth of the midwater trawl net by adding a weight $W_s$ to an arbitrary point of the warp takes an equation of the form $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ Where $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}^l=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ and $T_u$ represents the tension at the point on the warp, ${\theta}_u$ the angle between the direction of $T_u$ and horizontal axis, $T_u^2$ the tension at that point when a weights $W_s$ adds to the point where $T_u$ is acted on. 5. If otter boards were constructed lighter and adequate weights were added at their bottom to stabilize them, even they were the same shapes as those of bottom trawls, they were definitely applicable to the midwater trawl gears as the result of the experiments. 6. As the results of water tank tests the relationship between net height of H cm velocity of v m/sec, and that between hydrodynamic resistance of R kg and the velocity of a model net as shown in figure 6 are respectively given by $$H=8+\frac{10}{0.4+v}$$ $$R=3+9v^2$$ 7. It was found that the cross-wing type depth control devices were more stable in operation than that of the H-wing type as the results of the experiments at sea. 8. The hydrodynamic resistance of the net gear in midwater trawling is so large, and regarded as nearly the drag, that sweeping depth of the gear was very stable in spite of types of the depth control devices. 9. An area of the horizontal wing of the H-wing type depth control device was $1.2{\times}2.4m^2$. A midwater trawl net of 2 ton hydrodynamic resistance was connected to the devices and towed with the velocity of 2.3 kts. Under these conditions the depth change of about 20m of the trawl net was obtained by controlling an angle or attack of $30^{\circ}$.

  • PDF

INFLUENCE OF FUEL-MATRIX INTERACTION ON THE BREAKAWAY SWELLING OF U-MO DISPERSION FUEL IN AL

  • Ryu, Ho Jin;Kim, Yeon Soo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.159-168
    • /
    • 2014
  • In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model predictions, advantageous fuel design parameters are recommended to prevent breakaway swelling.

HIP Diffusion Bonding of Two Types of Superalloys for Engine Blisk Applications (엔진 블리스크 제조를 위한 초내열합금 이종재의 HIP Diffusion Bonding)

  • 나영상;황형철;염종택;권영삼;박노광
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • HIP diffusion bonding of Ni-based superalloys, cast Mar-M247 (MM247) and Udimet 720 (U720) powder, was experimentally and numerically studied. Subsolvus HIP treatment was optimized by investigating the variations of high temperature tensile properties of HIP-bonded specimens with powder size, HIP'ing time, etc. While the tensile strength at high temperatures showed no detectable changes, the tensile elongation and reduction in area were slightly increased as the powder size decreased from -140 mesh to -270 mesh. While as-HIP'ed U720 showed a high tensile strength comparable to that of lorded U720 alloy, the HIP diffusion-bonded specimen showed a strength lower than the forged U720 alloy and the cast MM247 alloy The increase of HIP'ing tune from 2 hours to 3 hours resulted in a rapid risc of tensile strength and elongation due to the disappearence of microvoids in the cast MM247. FEM simulation for HIP process was conducted by applying the McMeeking micromechanical model, which uses power-law creep model as constitutive equations. ABAQUS user subroutine CREEP with an implemented microscopic model was used for the simulation. Numerical simulation was shown to be essential for the near-net shape manufacturing as well as the HIP process optimization.