본 논문에서는, 시뮬레이션 상에서 반도체 후단 공정의 프로세스를 구현하고 파이프 내부 상황을 모니터링하기 위해 전기 정전용량을 기반으로 한 U-net 모델을 적용하였다. 배관에 부착된 전극에서 측정한 정전용량 값은 U-net 네트워크 모델의 입력 데이터로 사용되며, 모델을 통해 추정한 유전율 분포를 가지고 파이프 단면을 이미지화하였다. 성능 평가를 위해 수치 시뮬레이션 얀에서 U-net 모델, FCNN(Fully-connected neural network) 모델, Newton-Raphson 방법으로 재구성한 이미지를 비교한 결과, U-net이 다른 이미지 복원 방식보다 좋은 복원 성능을 보였다.
본 연구에서는 시계열 순서의 의미가 희석될 수 있는 기존의 U-net 기반 딥러닝 강우예측 모델의 성능을 개선하고자 하였다. 이를 위해서 데이터의 연속성을 고려한 ConvLSTM2D U-Net 신경망 구조를 갖는 모델을 적용하고, RainNet 모델 및 외삽 기반의 이류모델을 이용하여 예측정확도 개선 정도를 평가하였다. 또한 신경망 기반 모델 학습과정에서의 불확실성을 개선하기 위해 단일 모델뿐만 아니라 10개의 앙상블 모델로 학습을 수행하였다. 학습된 신경망 강우예측모델은 현재를 기준으로 과거 30분 전까지의 연속된 4개의 자료를 이용하여 10분 선행 예측자료를 생성하는데 최적화되었다. 최적화된 딥러닝 강우예측모델을 이용하여 강우예측을 수행한 결과, ConvLSTM2D U-Net을 사용하였을 때 예측 오차의 크기가 가장 작고, 강우 이동 위치를 상대적으로 정확히 구현하였다. 특히, 앙상블 ConvLSTM2D U-Net이 타 예측모델에 비해 높은 CSI와 낮은 MAE를 보이며, 상대적으로 정확하게 강우를 예측하였으며, 좁은 오차범위로 안정적인 예측성능을 보여주었다. 다만, 특정 지점만을 대상으로 한 예측성능은 전체 강우 영역에 대한 예측성능에 비해 낮게 나타나, 상세한 영역의 강우예측에 대한 딥러닝 강우예측모델의 한계도 확인하였다. 본 연구를 통해 시간의 변화를 고려하기 위한 ConvLSTM2D U-Net 신경망 구조가 예측정확도를 높일 수 있었으나, 여전히 강한 강우영역이나 상세한 강우예측에는 공간 평활로 인한 합성곱 신경망 모델의 한계가 있음을 확인하였다.
본 논문에서는 이중 분기 디코더를 갖는 복소 중첩 U-Net 기반의 새로운 음성 향상 모델을 제안하였다. 제안된 모델은 음성 신호의 크기와 위상 성분을 동시에 추정할 수 있도록 복소 중첩 U-Net으로 구성되며, 디코더는 스펙트럼 사상과 시간 주파수 마스킹을 각각의 분기에서 수행하는 이중 분기 디코더 구조를 갖는다. 이때, 이중 분기 디코더 구조는 단일 디코더 구조에 비하여, 음성 정보의 손실을 최소화하면서 잡음을 효과적으로 제거할 수 있도록 한다. 실험은 음성 향상 모델 학습을 위해 보편적으로 사용되는 VoiceBank + DEMAND 데이터베이스 상에서 이루어졌으며, 다양한 객관적 평가 지표를 통해 평가되었다. 실험 결과, 이중 분기 디코더를 사용하는 복소 중첩 U-Net 기반 음성 향상 모델은 기존의 베이스라인과 비교하여 Perceptual Evaluation of Speech Quality(PESQ) 점수가 0.13가량 증가하였으며, 최근 제안된 음성 향상 모델들보다도 높은 객관적 평가 점수를 보였다.
본 논문에서는 사용자의 개입없이 고해상도 위성 영상을 활용하여 정밀한 토지피복분류를 위해 U-Net 네트워크 모델에 SPADE 구조를 결합한 SSResUNet 모델을 제안한다. 제안하는 네트워크는 위성 영상의 공간적 특성을 보존하여 복잡도가 높은 환경에서도 강인한 분류모델이라는 장점이 있다. 다목적실용위성 3A 영상을 통해 학습한 결과 기존 U-Net, U-Net++ 대비 뛰어난 결과를 보였으며 평균 IoU 76.10, Dice 86.22의 성능을 도출하였다.
본 논문은 반려견의 피부질환 발병 여부와 부위를 추론하기 위해서 딥러닝 기반 U-Net 모델을 학습하여 이미지 촬영을 통한 반려견의 피부병 발병 여부와 추론되는 병명을 제공하는 애플리케이션을 개발하였다. U-Net은 의료영상 분야에서 주로 사용되는 영역 분할(Image Segmentation) 기반 학습 모델로써 폴리곤 형태의 특정 이미지 영역을 구분하는 데 효과적이다. 따라서 반려견의 피부 이미지에서 병변 영역 식별에 활용할 수 있다. 본 논문에서는 반려견의 6가지 주요 피부질환을 클래스로 정의하고 이를 분별하는 U-Net 모델을 학습시켰다. 이를 모바일 앱으로 구현하여 간단한 카메라 촬영으로 병변 분석과 예측 작업을 수행하여 결과를 제공한다. 이를 통해서 반려인들은 반려동물의 건강 상태를 관찰하고 조기 진단에 도움이 되는 정보를 얻을 수 있다. 이와 같이 딥러닝을 통해서 반려동물 건강관리에 신속하고 정확한 진단 도구를 제공함으로써 가정에서도 손쉽게 이용할 수 있는 서비스 개발에 중요한 의미를 두고 있다.
본 논문에서는 딥러닝을 이용한 영상 분할에서 성능을 향상하기 위해 퍼지 논리를 적용하는 퍼지 딥러닝 모델인 퍼지 U-Net을 제안한다. 퍼지 논리를 이용한 퍼지 모듈을 영상 분할에서 우수한 성능을 보이는 딥러닝 모델인 U-Net에 결합하여 다양한 형태의 퍼지 모듈을 시뮬레이션하였다. 제안된 딥러닝 모델의 퍼지 모듈은 이미지의 특징맵과 해당 분할 결과 사이의 본질적이고 복잡한 규칙을 학습다. 이를 위해 치아 CBCT 데이터에 적용하여 제안된 방법의 우수성을 입증하였다. 시뮬레이션 결과 제안된 퍼지 U-Net에서 더하기 스킵 연결을 사용한 모델의 ADD-RELU 퍼지 모듈 구조의 성능이 시험용 데이터에 대해 0.7928로 가장 우수한 것을 볼 수 있다.
This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.
Seung-Jin Yoo;Soon Ho Yoon;Jong Hyuk Lee;Ki Hwan Kim;Hyoung In Choi;Sang Joon Park;Jin Mo Goo
Korean Journal of Radiology
/
제22권3호
/
pp.476-488
/
2021
Objective: We aimed to develop a deep neural network for segmenting lung parenchyma with extensive pathological conditions on non-contrast chest computed tomography (CT) images. Materials and Methods: Thin-section non-contrast chest CT images from 203 patients (115 males, 88 females; age range, 31-89 years) between January 2017 and May 2017 were included in the study, of which 150 cases had extensive lung parenchymal disease involving more than 40% of the parenchymal area. Parenchymal diseases included interstitial lung disease (ILD), emphysema, nontuberculous mycobacterial lung disease, tuberculous destroyed lung, pneumonia, lung cancer, and other diseases. Five experienced radiologists manually drew the margin of the lungs, slice by slice, on CT images. The dataset used to develop the network consisted of 157 cases for training, 20 cases for development, and 26 cases for internal validation. Two-dimensional (2D) U-Net and three-dimensional (3D) U-Net models were used for the task. The network was trained to segment the lung parenchyma as a whole and segment the right and left lung separately. The University Hospitals of Geneva ILD dataset, which contained high-resolution CT images of ILD, was used for external validation. Results: The Dice similarity coefficients for internal validation were 99.6 ± 0.3% (2D U-Net whole lung model), 99.5 ± 0.3% (2D U-Net separate lung model), 99.4 ± 0.5% (3D U-Net whole lung model), and 99.4 ± 0.5% (3D U-Net separate lung model). The Dice similarity coefficients for the external validation dataset were 98.4 ± 1.0% (2D U-Net whole lung model) and 98.4 ± 1.0% (2D U-Net separate lung model). In 31 cases, where the extent of ILD was larger than 75% of the lung parenchymal area, the Dice similarity coefficients were 97.9 ± 1.3% (2D U-Net whole lung model) and 98.0 ± 1.2% (2D U-Net separate lung model). Conclusion: The deep neural network achieved excellent performance in automatically delineating the boundaries of lung parenchyma with extensive pathological conditions on non-contrast chest CT images.
본 연구의 목적은, U-net 딥러닝 모델을 이용하여 CT 영상에서의 노이즈 감소 효과를 다양한 하이퍼 파라미터를 적용하여 평가하였다. 노이즈가 포함된 입력 영상 생성을 위하여 Gaussian 노이즈를 적용하였고, 총 1300장의 CT 영상에서 train, validation, test 셋의 비율을 8:1:1로 유지하여 U-net 모델을 적용하여 학습하였다. 연구에서 적용된 하이퍼파라미터는 최적화 함수 Adagrad, Adam, AdamW와 학습횟수 10회, 50회, 100회와 학습률 0.01, 0.001, 0.0001을 적용하였으며, 최대 신호 대 잡음비와 영상의 변동계수 값을 계산하여 정량적으로 분석하였다. 결과적으로 U-net 딥러닝 모델을 적용한 노이즈 감소는 영상의 질을 향상시킬 수 있으며 노이즈 감소 측면에서 유용성을 입증하였다.
소나무 재선충 피해나무는 줄어들고 있으나, 피해 지역은 전국으로 확대되고 있다. 최근에 딥러닝 기술이 발전하면서 소나무재선충 고사목 탐지 연구에 적용이 빠르게 시도되고 있다. 본 연구의 목적은 딥러닝 학습데이터의 효과적인 취득과 정확한 참값을 확보하고, 학습을 통해 U-Net 모델의 탐지능력을 보다 향상시키기 위함이다. 이러한 목적달성을 위해 단계별 딥러닝 알고리즘을 적용한 필터링 방법을 이용하여 딥러닝 모델의 불명확한 분석 근거를 최소화하고, 효율적인 분석 및 판단을 할 수 있도록 하였다. 분석결과 U-Net알고리즘을 이용한 소나무재선충 고사목 탐지 및 성능향상에 있어 기간별로 분석한 참값을 이용한 U-Net 모델이 기존에 제공하였던 참값을 이용한 U-Net 모델보다 재현율(Recall)은 -0.5%p, 정밀도(Precision)은 7.6%p, F-1 score는 4.1%p로 분석되었다. 향후 다양한 필터링 기법을 적용하여 재선충 탐지 정밀도를 높일 수 있는 가능성이 있을 것으로 판단되며, 드론 정사영상과 인공지능을 이용한 드론 예찰방법이 소나무재선충 방제 사업에 활용 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.