This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.
A lead slowing-down spectrometer (LSDS) system is under development to analyze isotopic fissile content that is applicable to spent fuel and recycled material. The source neutron mechanism for efficient and effective generation was also determined. The source neutron interacts with a lead medium and produces continuous neutron energy, and this energy generates dominant fission at each fissile, below the unresolved resonance region. From the relationship between the induced fissile fission and the fast fission neutron detection, a mathematical assay model for an isotopic fissile material was set up. The assay model can be expanded for all fissile materials. The correction factor for self-shielding was defined in the fuel assay area. The corrected fission signature provides well-defined fission properties with an increase in the fissile content. The assay procedure was also established. The assay energy range is very important to take into account the prominent fission structure of each fissile material. Fission detection occurred according to the change of the Pu239 weight percent (wt%), but the content of U235 and Pu241 was fixed at 1 wt%. The assay result was obtained with 2~3% uncertainty for Pu239, depending on the amount of Pu239 in the fuel. The results show that LSDS is a very powerful technique to assay the isotopic fissile content in spent fuel and recycled materials for the reuse of fissile materials. Additionally, a LSDS is applicable during the optimum design of spent fuel storage facilities and their management. The isotopic fissile content assay will increase the transparency and credibility of spent fuel storage.
The Cardiac Gated Blood Pool (GBP) scintigram, a nuclear medicine imaging, calculates the left ventricular Ejection Fraction (EF) by segmenting the left ventricle from the heart. However, in order to accurately segment the substructure of the heart, specialized knowledge of cardiac anatomy is required, and depending on the expert's processing, there may be a problem in which the left ventricular EF is calculated differently. In this study, using the DeepLabV3 architecture, GBP images were trained on 93 training data with a ResNet-50 backbone. Afterwards, the trained model was applied to 23 separate test sets of GBP to evaluate the reproducibility of the region of interest and left ventricular EF. Pixel accuracy, dice coefficient, and IoU for the region of interest were 99.32±0.20, 94.65±1.45, 89.89±2.62(%) at the diastolic phase, and 99.26±0.34, 90.16±4.19, and 82.33±6.69(%) at the systolic phase, respectively. Left ventricular EF was calculated to be an average of 60.37±7.32% in the ROI set by humans and 58.68±7.22% in the ROI set by the deep learning segmentation model. (p<0.05) The automated segmentation method using deep learning presented in this study similarly predicts the average human-set ROI and left ventricular EF when a random GBP image is an input. If the automatic segmentation method is developed and applied to the functional examination method that needs to set ROI in the field of cardiac scintigram in nuclear medicine in the future, it is expected to greatly contribute to improving the efficiency and accuracy of processing and analysis by nuclear medicine specialists.
Sae Byeol, Mun;Young Jae, Kim;Won-Suk, Lee;Kwang Gi, Kim
Journal of Biomedical Engineering Research
/
v.43
no.6
/
pp.434-440
/
2022
Liver transplantation is a critical used treatment method for patients with end-stage liver disease. The number of cases of living donor liver transplantation is increasing due to the imbalance in needs and supplies for brain-dead organ donation. As a result, the importance of the accuracy of the donor's suitability evaluation is also increasing rapidly. To measure the donor's liver volume accurately is the most important, that is absolutely necessary for the recipient's postoperative progress and the donor's safety. Therefore, we propose liver segmentation in abdominal CT images from pre-operation, POD 7, and POD 63 with a two-dimensional U-Net. In addition, we introduce an algorithm to measure the volume of the segmented liver and measure the hepatectomy rate and regeneration rate of pre-operation, POD 7, and POD 63. The performance for the learning model shows the best results in the images from pre-operation. Each dataset from pre-operation, POD 7, and POD 63 has the DSC of 94.55 ± 9.24%, 88.40 ± 18.01%, and 90.64 ± 14.35%. The mean of the measured liver volumes by trained model are 1423.44 ± 270.17 ml in pre-operation, 842.99 ± 190.95 ml in POD 7, and 1048.32 ± 201.02 ml in POD 63. The donor's hepatectomy rate is an average of 39.68 ± 13.06%, and the regeneration rate in POD 63 is an average of 14.78 ± 14.07%.
Korean Journal of Agricultural and Forest Meteorology
/
v.5
no.2
/
pp.70-80
/
2003
We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.
Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.
In Korea, little is known about unemployment duration and exit rate from unemployment. This paper empirically examines the duration of unemployment using data for the years 1996 and 1997 on unemployed individuals who are eligible for unemployment insurance benefits in Korea. A parametric survival model (log-normal model) is adopted to identify factors predicting transitions to reemployment. Factors that affect unemployment duration are sex, age, employment duration (year), prior salary, region, prior employment industry, cause of unemployment, officially determined unemployment benefit duration, degree of benefit exhaustion, and amount of benefits for early reemployment. However, education is not statistically significant In degree of benefit exhaustion, the exit rate from unemployment decreases as benefit exhaustion is approached. In amount of benefits for early reemployment, the exit rate from unemployment increases as amount of benefits increases. Hazards for reemployment gradually increase until 80 days after unemployment and gradually decrease in the following period. Thus, we find that distribution of hazards for reemployment has log-normal shapes between inverted U and inverted L This paper takes advantage of a unique analysis about unemployment duration and exit rate from unemployment in the Korean Unemployment Insurance system which functions as the most valuable social safely-net mechanism in the recent national economic crisis. Indeed, this paper provides a basic knowledge about realities of unemployed individuals in the Unemployment Insurance system and identifies research areas that require further study.
We are motivated by how offline and online firms compete. The Internet made many conventional offline firms build a dynamic online business as another sales channel using their advantages such as brand equity, an existing customer base with comprehensive purchasing data, integrated marketing, economies of scale, and longtime experience with the logistics of order fulfillment and customer service. Even though the hybrid selling using both offline and online channel seems to have advantages over a pure online retailer, all the conventional offline firms are not seen to create an online business. Many conventional offline firms began to launch online business since the Internet era, however, just being online business is not likely to guarantee success. According to Bizate.com's report whether the hybrid channel strategy is successful is still under investigation. For example, consider the classic case of Barnes and Noble versus Amazon.com, Barnes and Noble was already the largest chain of bookstores in the U,S., when Amazon.com was established in 1995, BarnesandNoble.com followed suit in 1997, After suffering losses in its initial years, Amazon finally turned profitable in 2003. In 2004, Amazon's net income was $588 million on revenues of $6.92 billion, while Barnes and Noble earned $143 million on revenues of $4.87 billion, which included BarnesandNoble.com's loss of $21 million on revenues of $420 million. While these examples serve to motivate our thinking, it does not explain when offline firms should venture online. It also does not provide an analytical framework that can generalized to other competitive online-offline situations. We attempt to do this in this paper and analyze a hybrid channel model where a conventional offline firm competes against online firms using its own direct online channels. We are particularly interested in an optimal channel strategy when a conventional offline firm sells its products through its own direct online channel to compete with other rival online firms. We consider two situations where its direct online channel and other online firms are symmetric and asymmetric in the brand effect. The analysis of this paper presents several findings. In the symmetric model where a hybrid firm's online channel is not differentiated from a pure online firm, (i) a conventional offline firm will not launch its online business. In the asymmetric model where a hybrid firm's online channel is differentiated from a pure online firm, (ii) a conventional offline firm can launch its online business if its brand effect is greater than a certain threshold. (iii) there is a positive relationship between its brand effect and online customer costs showing that a conventional offline firm needs more brand effect in order to launch online business as online customer costs decrease. (iv) there is a negative relationship between its brand effect and the number of customers with access to the Internet showing that a conventional offline firm tends to launch its online business when customers with access to the Internet increases.
With the spread of smart speakers based on voice recognition technology and deep learning technology, not only non-disabled people, but also the blind or physically handicapped can easily control home appliances such as lights and TVs through voice by linking home network services. This has greatly improved the quality of life. However, in the case of speech-impaired people, it is impossible to use the useful services of the smart speaker because they have inaccurate pronunciation due to articulation or speech disorders. In this paper, we propose a personalized voice classification technique for the speech-impaired to use for some of the functions provided by the smart speaker. The goal of this paper is to increase the recognition rate and accuracy of sentences spoken by speech-impaired people even with a small amount of data and a short learning time so that the service provided by the smart speaker can be actually used. In this paper, data augmentation and one cycle learning rate optimization technique were applied while fine-tuning ResNet18 model. Through an experiment, after recording 10 times for each 30 smart speaker commands, and learning within 3 minutes, the speech classification recognition rate was about 95.2%.
Jung Hee Hong;Eun-Ah Park;Whal Lee;Chulkyun Ahn;Jong-Hyo Kim
Korean Journal of Radiology
/
v.21
no.10
/
pp.1165-1177
/
2020
Objective: To assess the feasibility of applying a deep learning-based denoising technique to coronary CT angiography (CCTA) along with iterative reconstruction for additional noise reduction. Materials and Methods: We retrospectively enrolled 82 consecutive patients (male:female = 60:22; mean age, 67.0 ± 10.8 years) who had undergone both CCTA and invasive coronary artery angiography from March 2017 to June 2018. All included patients underwent CCTA with iterative reconstruction (ADMIRE level 3, Siemens Healthineers). We developed a deep learning based denoising technique (ClariCT.AI, ClariPI), which was based on a modified U-net type convolutional neural net model designed to predict the possible occurrence of low-dose noise in the originals. Denoised images were obtained by subtracting the predicted noise from the originals. Image noise, CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were objectively calculated. The edge rise distance (ERD) was measured as an indicator of image sharpness. Two blinded readers subjectively graded the image quality using a 5-point scale. Diagnostic performance of the CCTA was evaluated based on the presence or absence of significant stenosis (≥ 50% lumen reduction). Results: Objective image qualities (original vs. denoised: image noise, 67.22 ± 25.74 vs. 52.64 ± 27.40; SNR [left main], 21.91 ± 6.38 vs. 30.35 ± 10.46; CNR [left main], 23.24 ± 6.52 vs. 31.93 ± 10.72; all p < 0.001) and subjective image quality (2.45 ± 0.62 vs. 3.65 ± 0.60, p < 0.001) improved significantly in the denoised images. The average ERDs of the denoised images were significantly smaller than those of originals (0.98 ± 0.08 vs. 0.09 ± 0.08, p < 0.001). With regard to diagnostic accuracy, no significant differences were observed among paired comparisons. Conclusion: Application of the deep learning technique along with iterative reconstruction can enhance the noise reduction performance with a significant improvement in objective and subjective image qualities of CCTA images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.