• Title/Summary/Keyword: U(VI)

Search Result 144, Processing Time 0.025 seconds

Adsorption Properties of Uranium on Acrylic Fibers Treated with Hydroxylamine (하이드록실 아민으로 처리한 아크릴 섬유의 우라늄 흡착특성)

  • Chin Young Gil;Lee Jung Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.2
    • /
    • pp.98-103
    • /
    • 1990
  • Fibrous adsorbents containing amidoxime group which make chelate complexes with uranyl ions are studied for the recovery of uranium from sea water. Acrylic fibers are used as base Polymer. The adsorption properties of uranium are carried out to examine pH effect, concen-tration dependence, adsorption rate, separation, and chelate complex. The results obtained are as follows; 1. Metal capacity of U (VI) ion is in the range of pH $2\~10.2$. Amidoxime group-containing fiber recover U (VI) ions existed in sea water or waste water in extremely small quantities. 3. Using amidoxime group-containing fiber Cu (II) and U (VI) are separated with each other in dilute nitric acid solution (pH 2.3). 4. U (VI) chelate complexes are conformed by tridendate ligands, which are coordinated with one nitrogen and two oxygens onto amidoxime group-containing fiber.

  • PDF

Calculation of the Hubbard U Parameters by the Solid Atom Method

  • Youn, S.J.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.71-75
    • /
    • 2005
  • An effective method, i.e., the solid atom method, is suggested to obtain the Coulomb interaction parameter, U, and the Hund exchange coupling constant, J, for use in the LDA+U calculation. The par~meters are obtained self-consistently during the LDA+U calculation. The method is applied to typical transition metal oxides and $MnB^{VI}(B^{VI}=S,Se,Te)$. The U values for the transition metal oxides have similar magnitude to previous calculations although they are obtained by a much simpler method. $MnB^{VI}s$ have been characterized as crossroads materials between charge transfer and band insulators by the LDA+U calculation.

Uranium(VI) Phosphate Precipitate Formation in a Carbonate Solution

  • Im, Hee-Jung;Park, Kyoung-Kyun;Park, Yeong-Jae;Kim, Won-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.311-312
    • /
    • 2005
  • The precipitation of U(VI) in the presence of phosphate and carbonate was investigated in the pH range of 4 to 13 and the following was obtained as a result of this experimental condition. U(VI) precipitates as a $NaUO_{2}PO_{4}$ at pH<9 but as mixtures of phosphate, hydroxides and/or carbonate at pH>9. The portion of the phosphate in the precipitate decreases almost linearly to near zero with an increasing pH in the range of 9 to 13. The U(VI) phosphate is dissolved by the carbonate complex formation at pH<10.5. The ternary complex of a carbonate and phosphate is not found.

  • PDF

Extraction Behavior of Uranyl Ion From Nitric Acid Medium by TBP Extractant in Ionic Liquid

  • Kim, Ik-Soo;Chung, Dong-Yong;Lee, Keun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.457-464
    • /
    • 2020
  • In this study, extraction of uranium(VI) from an aqueous nitric acid solution was investigated using tri-n-butyl phosphate (TBP) as an extractant in an ionic liquid, 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ([Cnmim][Tf2N]). The distribution ratio of U(VI) in 1.1 M TBP/[Cnmim][Tf2N] was significantly high when the concentration of nitric acid was low. The value of the distribution ratio decreased as the concentration of the nitric acid increased at lower acidities, and then increased with a nitric acid concentration of up to 8 M. This can be attributed to the different extraction mechanisms of U(VI) based on nitric acid concentrations. Thus, a cation exchange at low acidity levels and an ion-pair extraction at high acidity levels were suggested as the extraction mechanism of U(VI) in the TBP/[Cnmim][Tf2N] system.

Electrosorption of U(IV) by Electochemically Modified Activated Carbon Fibers

  • Jung, Chong-Hun;Oh, Won-Zin;Lee, Yu-Ri;Park, Soo-Jin
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using an activated carbon fiber (ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at a lower potential, the ACF was electrochemically modified in an acidic and a basic solution. Pore structure and functional groups of the electrochemically modified ACF were examined, and the effects of the modification conditions were studied for the adsorption of U(VI). Specific surface area of all the ACFs was decreased by this modification. The amount of the acidic functional groups decreased with a basic modification, while the amount increased a lot with an acidic modification. The electrosorption capacity of U(VI) decreased on the acid modified electrode due to the shielding effect of the acidic functional groups. The base modified electrode enhanced the capacity due to a reduction of the acidic functional groups. The electrosorption amount of U(VI) on the base modified electrode at .0.3 V corresponds to that of the as-received ACF electrode at .0.9 V. Such a good adsorption capacity was due to a reduction of the shielding effect and an increase of the hydroxyl ions in the electric double layer on the ACF surface by the application of negative potential.

  • PDF

Toxic Activities of the Oxidant Chromate in Culture Cells (산화성 크롬의 배양세포에서의 독성작용)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.1-9
    • /
    • 1998
  • The ROS-producing potency of chromium compounds of several oxidation states were determined in the H4 cells. $K_2Cr_2O_7$ as Cr (VI), synthetic Cr (V) compounds and Cr (III) as TPP produced high level of ROS. However, ROS values of Cr-picolinate as Cr (III), CrCl$_2$, CrCI$_2$, were almost equal to the control. The effects of physiological antioxidants compounds which react with free radicals were examined for their effects on chromate-induced production of reactive oxygen species (ROS) in A549 cells after the addition of $K_2Cr_2O_7$. The compounds used were vitamin C (ascorbate), vitamin E ($\alpha$-tocopherol), superoxide dismutase (SOD) and catalase. The preincubation of ascorbate (200uM) with A549 cells for 20hr resulted in a significant reduction of hexavalent chromate(100uM) induced ROS. However, there is no effects of preincubation of the cells with vitamin E succinate (10 and 20uM, 20hr) on the ROS production. Also, the effects of Cr (VI) on the cell cycle of A549 cells was measured by adding the DNA intercalating agent, propidium iodide. S phase of the cell cycle was increased by the chromium (VI) compounds up to 20uM indicating toxicity or possible mitogenic action of the cell. The shoulder in Go/G1 phase at 20uM Cr (VI) with 24 hr treatment indicates apoptosis.

  • PDF

Study on the Chemical Speciation of Hydrolysis Compounds of U(VI) by Using Time-Resolved Laser-Induced Fluorescence Spectroscopy (시간분해 레이저 유도 형광 분광학을 이용한 우라늄(VI) 가수분해 화학종 규명 연구)

  • Jung, Euo-Chang;Cho, Hye-Ryun;Park, Kyoung-Kyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 2009
  • Study on the chemical speciation of uranium(VI) species, ${UO_2}^{2+}$, $UO_2(OH)^+$, ${(UO_2)}_2{(OH)_2}^{2+}$, ${(UO_2)}_3{(OH)_5}^+$, has been peformed by using time-resolved laser-induced fluorescence spectroscopy. Speciation sensitivity which depends on the excitation wavelength was investigated. We obtained the speciation sensitivity in the order of $10^{-9}$ M concentration of U(VI) compounds at the excitation wavelength of 266 nm. The fluorescence spectrum and lifetime of ${UO_2}^{2+}$ were carefully measured at pH 1 and ion strength of 0.1 M. The spectrum showed the four characteristic peaks located around 488, 509, 533, 559nm and the fluorescence lifetime of $1.92{\pm}0.17{\mu}s$. The wavelength shifts of fluorescence peaks and the change of lifetimes for uranium hydrolysis compounds were compared with those of ${UO_2}^{2+}$. We report on the characteristic features, the shifts of peaks to the longer wavelength direction and the prolonged lifetimes, in the fluorescence of the U(VI) hydrolysis compounds.

  • PDF

Aqueous U(VI) removal by green rust and vivianite at phosphate-rich environment

  • Sihn, Youngho;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • Vivianite (Fe32+(PO4)2·8H2O) and green rust ([Fe42+Fe23+(OH)-12][SO42-·2H2O]2-), ferrous containing minerals, could remove aqueous U(VI) in 5 min. and the efficiencies of green rust were roughly 2 times higher than that of vivianite. The zeta potential measurement results implies that the better performance of green rust might be attributed to the favorable surface charge toward uranyl phosphate species. The removal behaviors of the minerals were well fitted by pseudo-second order kinetic model (R2 > 0.990) indicating the dominant removal process was chemical adsorption. Effects of Ca2+ and CO32- at pH 7 were examined in terms of removal kinetic and capacity. The kinetic constants of aqueous U(VI) were 8 and 13 times lower (0.492 × 10-3 g/(mg·min); 0.305 × 10-3 g/(mg·min)) compared to the value in the absence of the ions. The thermodynamic equilibrium calculation showed that the stable uranyl species (uranyl tri-carbonate) were newly formed at the condition. Surface investigation on the reacted mineral with uranyl phosphates species were carried out by XPS. Ferrous iron and U(VI) on the green rust surface were completely oxidized and reduced into Fe(III) and U(IV) after 7 d. It suggests that the ferrous minerals can retard U(VI) migration in phosphate-rich groundwater through the adsorption and subsequent reduction processes.

The Reduction of Np(VI) by Acetohydroxamic Acid in Nitric Acid Solution

  • Chung, Dong-Yong;Lee, Eil-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1692-1694
    • /
    • 2005
  • Spent nuclear fuel is reprocessed commercially by the chemical process to recover U and Pu. Recently, new salt-free reagents to separate plutonium and neptunium from uranium suitable for use in a single cycle flowsheet have been developed. Acetohydroxamic acid $(CH_3CONHOH)$ has been taken much interest in as a complexing agent capable of selective stripping of tetravalent actinides from U(VI) when actinides are present in the solvent stream of the advanced PUREX process. Additionally acetohydroxamic acid will rapidly reduce Np(VI) to inextractable Np(V) thus allowing the separation of Np from U. In this study, the rate equation for the reduction of Np(VI) to Np(V) in nitric acid aqueous solution has been determined as: $-[NpO_2^{2+}]$/dt = $k[NpO_2^{2+}]$[AHA] with k = 191.2 ${\pm}$ 11.2 $M^{-1}s^{-1}$ at 25 ${\pm}$ 0.5 ${^{\circ}C}$ and $[HNO_3]$ = 1.0 M. Comparison with other reductants available in the literature, acetohydroxamic acid is a strong one for $NpO_2^{2+}$.