• Title/Summary/Keyword: Tyrosine residues

Search Result 85, Processing Time 0.023 seconds

Effect of Acetylation on Conformation of Glycinin (아세틸화가 Glycinin의 구조에 미치는 영향)

  • Kim, Kang-Sung;Rhee, Joon-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.714-720
    • /
    • 1989
  • Effects of acetylation on conformational changes of glycinin was studied using solvent perturbation, second derivative spectroscopy, near uv circular dichroism spectra and viscosity. Glycinin with purity of more than 93% was used for the experiment. Modification was carried out with acetic anhydride and glycinin with lysine residue modification of 0%, 28%, 65%, 85%, and 95% were used for the experiment. The result of solvent perturbation using some selected perturbants, such as glycerol, ethylene glycol, and dimethyl sulfoxide revealed that acetylation has caused increase In solvent accessibility of tyrosine residues from less than 40% in native protein to more than 70% for 95% acetylated glycinin. This was confirmed by second derivative spectroscopy. Near ultraviolet circular dichroism revealed that the spectra of native and acetylated glycinin were almost identical differing only in intensity and no other useful information could be derived from it. However, in the case of 95% acetylated glycinin the influence of tryptophan on the spectrum was more pronounced Specific viscosity of glycinin also increased by modification, the extent of which depended upon the degree of acetylation. These results supported that acetylation had caused globular conformation of glycinin to be expanded and denatured.

  • PDF

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -V. Amino Acids in the Hydrolysates of Humic Acids Extracted from Wild Grass Hay and Forest Litters (식물성(植物性) 유기물질(有機物質)의 부숙과정중(腐熟過程中) 부후물질(腐朽物質) 특성(特性)에 관한 연구(硏究) -V. 산야초(山野草)와 수목엽부식산(樹木葉腐植酸)의 산가수분해용액중(酸加水分解溶液中) Amino 산(酸)의 함량(含量))

  • Kim, Jeong-Je;Lee, Wi-Young;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 1989
  • A series of experiments was conducted to determine the contents and distribution of amino acids in the hydrolysates of humic acids extracted from 3 plant materials. Wild grass hay, and leaves of forest trees were used in this study. Seventeen amino acids were analyzed and their amounts determined. Results obtained from the experiments are summarized in the following: 1. Contents and distribution of hydrolyzable amino acids in the humic acid fractions depend on the kind of plant materials and the allowed time for humification. 2. Neutral amino acids was the largest part of the total amino acids, followed by acidic amino acids, and basic amino acids. 3. The total amounts of amino acids in the hydrolyzable humic acid fractions of well humified residues were in the following order: wild grass hay > leaves of deciduous trees > leaves of coniferous trees 4. In general the relative amounts of lysine increased with humification progressing. S. Glycine and glutamic acid were the two major amino acids in common for the hydrolysate of humic acids extracted from well decomposed residues of plant materials. Alanine, glutamic acid, glycine, aspartic acid and leucine were the five major amino acid in common in raw materials without exception. 6. Arginine appeared to be absent in any of the hydrolysates of humic acids from well humified plant materials. 7. Phenylalanine and tyrosine were present in all hydrolysates and their relative contents increased with the humification of plant materials.

  • PDF

Comparative Modeling of Human Tyrosinase - an Important Target for Developing Skin Whitening Agents (피부 미백제의 타겟 단백질인 인간 티로시나제의 3차원 구조 상동 모델링)

  • Choi, Jongkeun;Suh, Joo Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5350-5355
    • /
    • 2012
  • Human tyrosinase (hTyr) catalyzes the first and rate limiting step in the biosynthesis of a skin color determinant, melanin. Although a number of cosmetic companies have tried to develop hTyr inhibitors for several decades, absence of 3D structure of hTyr make it impossible to design or screen inhibitors by structure-based approach. Therefore, we built a 3D structure by comparative modeling technique based on the crystal structure of tyrosinase from Bacillus megaterium to provide structural information and to search new hit compounds from database. Our model revealed that two copper atoms of active site located deep inside and were coordinated with six strictly conserved histidine residues coming from four-helix-bundle. Substrate binding site had narrow funnel like shape and its entrance was wide and exposed to solvent. In addition, hTyr-tyrosine and hTyr-kojic acid, a well-known inhibitor, complexes were modeled with the guide of solvent accessible surface generated by in-house software. Our model demonstrated that only phenol group or its analogs could fill the binding site near the nuclear copper center, because inside of binding site had narrow shape relatively. In conclusion, the results of this study may provide helpful information for designing and screening new anti-melanogenic agents.

Effects of Nitric Oxide Donor Supplementation on Copper Deficient Embryos and Nitric Oxide-Mediated Downstream Signaling (Nitric Oxide Donor 첨가가 구리 결핍 배아의 발달과 Nitric Oxide 하위 신호전달체계에 미치는 영향)

  • Yang, Soo-Jin
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.691-700
    • /
    • 2008
  • One suggested mechanism underlying copper (Cu) deficiency teratogenicity is a low availability of nitric oxide (NO), signaling molecule which is essential in developmental processes. Increased superoxide anions secondary to decreased activities of Cu-zinc superoxide dismutase (Cu-Zn SOD) in Cu deficiency can interact with NO to form peroxynitrite, which can nitrate proteins at tyrosine residues. In addition, peroxynitrite formation can limit NO bioavailability. We previously reported low NO availability and increased protein nitration in Cu deficient (Cu-) embryos. In the current study, we tested whether Cu deficiency alters downstream signaling of NO by assessing cyclic GMP (cGMP) and phosphorylated vasodilator-stimulating phosphoprotein (VASP) levels, and whether NO supplementation can affect these targets as well as protein nitration. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu- dams were collected and cultured in either Cu+ or Cu- media for 48 hr. A subset of embryos was cultured in Cu- media supplemented with a NO donor (DETA/NONOate; 20 ${\mu}M$) and/or Cu-Zn SOD. Cu-/Cu- embryos showed a higher incidence of embryonic and yolk sac abnormalities, low NO availability, blunted dose-response in NO concentrations to increasing doses of acetylcholine, low mRNA expression of endothelial nitric oxide synthase (eNOS), increased levels of 3-nitrotyrosine (3-NT) compared to Cu+/Cu+ controls. cGMP concentrations tended to be low in Cu-/Cu- embryos, and they were significantly lower in Cu-/Cu- yolk sacs than in controls. Levels of phosphorylated VASP at serine 239 (P-VASP) were similar in all groups. NO donor supplementation to the Cu- media ameliorated embryonic and yolk sac abnormalities, and resulted in increased levels of cGMP without altering levels of P-VASP and 3-NT. Taken together, these data support the concept that Cu deficiency limits NO availability and alters NO/cGMP-dependent signaling in Cu- embryos and yolk sacs, which contributes to Cu deficiency-induced abnormal development.

Effects of Site-Mutagenesis of an Amino Acid Triplet Repeat at $M_1$ and $M_2$ Muscarinic Receptors on Receptor Function ($M_1$$M_2$ 무스카린성 수용체에서 아미노산 Triplet Repeat의 Site-Mutagenesis가 수용체기능에 미치는 영향)

  • Lee, Seok-Yong;Lee, Sang-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.311-321
    • /
    • 1996
  • Both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T) at C-terminus ends of the second putative transmembrane domains. This triplet is repeated as LYT-LYT in $M_2$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of $M_1$ receptors. In this work, we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential cellular function at the two receptor subtypes. Mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence did not result in a significant change in the binding affinity of the agonist carbachol. The reverse mutation at the $M_2$ receptor also did not modify agonist affinity. Surprisingly, the LYTLYT $M_1$ receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular $Ca^{2+}$. On the other hand, the reverse $LYTLYT{\rightarrow}LYTTYL$ mutation in the $M_2$ receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of phosphoinositide (PI) hydrolysis. Our data suggest that the LYTTYL/LYTLYT sequence differences between $M_1$ and $M_2$ muscarinic receptors are not important for specifying ligand binding and coupling of various subtypes of muscarinic receptors to different cellular signaling pathways although they might play a role in the modulation of muscarinic reseptor coupling to PI hydrolysis.

  • PDF