• 제목/요약/키워드: Tyrosine kinases

검색결과 116건 처리시간 0.028초

Regulation of Nicotinic Acetylcholine Receptor by Tyrosine Kinase in Autonomic Major Pelvic Ganglion Neurons

  • ;;;공인덕
    • 대한의생명과학회지
    • /
    • 제13권2호
    • /
    • pp.119-125
    • /
    • 2007
  • It is widely known that protein tyrosine kinases (PTKs) are involved in controlling many biological processes such as cell growth, differentiation, proliferation, survival and apoptosis. An $\alpha3\beta4$ subunit combination acts as a major functional acetylcholine receptor (nAChRs) in male rat major pelvic ganglion (MPG) neurons, and their activation induces fast inward currents and intracellular calcium increases. Recently it has been reported that the activity of acetylcholine receptors (AChRs) in some neurons can be negatively regulated by PTKs. However, the exact mechanism of regulation of nAChRs by PTKs is poorly understood. Therefore, we examined the potential role particular in nAChR by PTK using electrophysiology and calcium imaging in male rat MPG neurons. ACh induced inward currents and $(Ca^{2+})_i$ increases in MPG neurons, concomitantly. These responses were inhibited by more than 90% in $Na^+$- or $Ca^{2+}$- free solution. $\alpha$-conotoxin AuIB, a selective $\alpha3\beta4$ nAChR blocket, inhibited ACh-induced inward currents. Genistein (10 $\mu$M), a broad-spectrum tyrosine kinase inhibitor, markedly decreased ACh-induced currents and $Ca^{2+}$ transients, whereas 10 $\mu$M genistin, an inactive analogue, had little effect. Overall these data suggest that the activities of $\alpha3\beta4$ AChRs in MPG neurons are positively regulated by PTK. In conclusion, trosine kinase may be one of the key factors in the regulation of $\alpha3\beta4$ nAChRs in rat MPG neurons, which may play an important roles in the autonomic neuronal function such as synaptic transmission, autonomic reflex, and neuronal plasticity.

  • PDF

Diagnostic Relevance of Overexpressed Serine Threonine Tyrosine Kinase/Novel Oncogene with Kinase Domain (STYK1/NOK) mRNA in Colorectal Cancer

  • Orang, Ayla Valinezhad;Safaralizadeh, Reza;Hosseinpour Feizi, Mohammad Ali;Somi, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6685-6689
    • /
    • 2014
  • Background: Alterations in gene expression levels or mutations of tyrosine kinases are detected in some human cancers. In this study, we examined whether serine threonine tyrosine kinase 1 (STYK1)/novel oncogene with kinase domain (NOK) is overexpressed in patients with colorectal cancer. We also examined the clinical relevance of STYK1/NOK expression in cancer tissues. Materials and Methods: In tumor samples of patients with colorectal cancer and their matched non-cancerous samples, STYK1/NOK messenger RNA (mRNA) expression was analyzed by quantitative reverse transcriptase polymerase chain reaction. Associations between the expression levels of STYK1/NOK and clinicopathological characteristics of colorectal cancer were also assessed using Mann-Whitney U and Kruskal-Wallis tests. Results: Upregulation of STYK1/NOK was found in cancer tissues even at early stage of colorectal cancer compared to normal adjacent tissues. The optimal cutoff point of 0.198 the STYK1/NOK expression showed 0.78 sensitivity and 0.75 specificity for diagnosis. Overexpressed STYK1/NOK was correlated with tumor size but had no association with other clinicopathological characteristics of colorectal cancer. Conclusions: These results indicate that STYK1/NOK mRNA is widely expressed in the patients with colorectal cancer and suggest that inhibition of this molecule could potentially serve as a novel therapeutic target.

Prognostic Value of Hematologic Parameters in Patients with Metastatic Renal Cell Carcinoma Using Tyrosine Kinase Inhibitors

  • Gunduz, Seyda;Mutlu, Hasan;Uysal, Mukremin;Coskun, Hasan Senol;Bozcuk, Hakan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3801-3804
    • /
    • 2014
  • Background: The prognostic significance of the neutrophil-to-lymphocyte ratio for progression free survival in patients with metastatic renal cell carcinoma is unclear. Materials and Methods: We retrospectively reviewed 45 patients diagnosed with metastatic RCC previously treated with tyrosine kinase inhibitors from two centers, Akdeniz University Hospital and Afyon Kocatepe University. The prognostic value of the pretreatment neutrophil-tolymphocyte ratio, and other clinical and laboratory parameters were assessed by univariate and multivariate analysis. Results: Median progression free survival (PFS) was 13.9 months [95% CI for HR (6.88-20.91)] and overall survival figure of 16.6 months [95% CI for HR (7.23-26.03)] Univariate analysis revealed that PFS was significantly affected by hemoglobin level [p=0.013 (95% CI for HR (0.71-0.96))], eosinophil count [p=0.031 (95% CI for HR (0.20-0.92))], ratio of neutrophil lymphocytes (NLR) [p=0.007 (95% CI for HR (1.47-11.74))] and calcium level [p=0.006 (95% CI for HR (0.15-0.73))]. However, only NLR [p=0.031 (95% CI for HR (1.15-18.1))] and calcium levels [p=0.018 (95% CI for HR (0.20-18.1))] retained significance with multivariate analysis. Median PFS was 23.9 vs 8.6 months in patients with NLR ${\leq}2$ vs NLR >2 (Log rank; p= 0.040). Conclusions: This study showed that increased pretreatment NLR is an independent prognostic factor for patients with metastatic RCC using tyrosine kinase inhibitors.

3T3-L1 지방세포에서 황백 추출물의 Glucose Uptake 촉진 및 인슐린 저항성 개선 활성 (Enhancing Effect of Extracts of Phellodendri Cortex on Glucose Uptake in Normal and Insulin-resistant 3T3-L1 Adipocytes)

  • 김소희;신은정;현창기
    • 생약학회지
    • /
    • 제36권4호통권143호
    • /
    • pp.291-298
    • /
    • 2005
  • Anti-hyperglycemic effects of 17 medicinal plants that have been used for ameliorating diabetes in oriental medicine were evaluated using glucose transport assay in 3T3-L1 adipocytes. Higher activities were obtained by treating water or alcohol extract of Phellodendri Cortex (PC), which showed enhancing effects both on basal and insulin-stimulated glucose uptake. The latter effect of PC was completely inhibited by wortmannin, a specific inhibitor for phosphatidyl inositol 3-kinase (PI 3-kinase), but not affected by SB203580, A specific inhibitor for p38 mitogen-activatedprotein kinase(MAPK). Genistein, an inhibitor for tyrosine kinases, abolished the PC effects completely. Treatment of vanadate, an inhibitor for tyrosine phosphatases, together with PC showed no significant synergic enhancement in glucose uptake. The results of inhibitors associated with insulin signaling pathway indicated that extracts of PC enhance glucose uptake by PI-3 kinase activation which is an upstream event for GLUT4 translocation. Antidiabetic effects of PC extract might be also due to enhanced tyrosine phosphorylation and reduced tyrosine dephosphorylation. In addition, PC accelerated insulin-stimulated glucose uptake in insulin-resistant cells, recovering the uptake level close to that of normal cells. These findings may offer a new way to utilize extracts of PC as novel anti-hyperglycemic agents.

Immunohistochemical Expression of Receptor Tyrosine Kinase (RTK) in Canine Brain Tumors

  • Jung, Hae-Won;Song, Joong-Hyun;Yu, Do-Hyeon;An, Su-Jin;Sur, Jung-Hyang;Kim, Young Joo;Han, Donghyun;Jung, Dong-In
    • 한국임상수의학회지
    • /
    • 제36권6호
    • /
    • pp.319-324
    • /
    • 2019
  • Receptor tyrosine kinases (RTK) are major promising targets in anticancer therapy in human and veterinary medicine. Using immunohistochemistry method, we evaluated the expressionof five types RTK (PDGFR-α, PDGFR-β, VEGFR 2, c-Kit and Abl) in the six canine brain tumor samples (2 meningioma, 2 astrocytoma, 1 ependymoma and 1 choroid plexus papilloma). A total of five samples expressed PDGFR-β (5/6), one sample, the choroid plexus papilloma, expressed c-Kit (1/6), and a total of two samples expressed Abl (2/6). None of the samples showed expression of PDGFR-α and VEGFR 2. We demonstrate that a significant portion of canine brain tumors express tyrosine receptors for growth factors and show that these receptors generally localize to tumor cell membranes and the cytoplasm. Evaluation of immunohistochemical expression for the RTKs PDGFR-β, c-Kit, and Alb in canine brain samples reveals an interesting potential for molecular targeting by TKIs in therapeutic studies of canine brain tumors, and more studies will be needed to assess the interactions and efficacy of these RTKs and TKIs. Based on these results, we have some evidence for novel chemotherapeutic trials using TKIs for canine nervous tumors.

A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

  • Lee, Yura;Bae, Kyoung Jun;Chon, Hae Jung;Kim, Seong Hwan;Kim, Soon Ae;Kim, Jiyeon
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.389-394
    • /
    • 2016
  • Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.

꾸지뽕나무 추출물의 비만세포 억제에 의한 항알레르기 효과 및 기전 (Cudrania tricuspidata Suppresses Mast Cell-Mediated Allergic Response In Vitro and In Vivo)

  • 김영미
    • 약학회지
    • /
    • 제56권1호
    • /
    • pp.26-34
    • /
    • 2012
  • Mast cells play an important role in early and late phase allergic reactions through allergen and IgE-dependent release of histamine, proteases, prostaglandins, and several multifunctional cytokines. In this study, we investigated whether Cudrania tricuspidata extract (CTE) suppresses IgE-mediated allergic responses in mast cells, an allergic animal model, and its mechanism of action in mast cells. We found that CTE inhibited IgE-mediated degranulation and cytokine production in rat basophilic leukemia (RBL)-2H3 mast cells and bone marrow-derived mast cells (BMMC), as well as passive cutaneous anaphylaxis (PCA) in mice. With regard to its mechanism of action, CTE suppressed the activating phosphorylation of spleen tyrosine kinase (Syk), a key enzyme in mast cell signaling processes and that of LAT, a downstream adaptor molecule of Syk in $Fc{\varepsilon}RI$-mediated signal pathways. CTE also suppressed the activating phosphorylation of mitogen-activated protein (MAP) kinases and Akt. The present results strongly suggest that the anti-allergic activity of CTE is mediated through inhibiting degranulation and allergic cytokine secretion by inhibition of Syk kinase in mast cells. Therefore, CTE may be useful for the treatment of allergic diseases.

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • 제4권2호
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과 (Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes)

  • 이현아;한지숙
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.859-867
    • /
    • 2023
  • 루페올은 5환성 트리테르펜의 일종으로 많은 질병에 치료 효과가 있는 것으로 보고되었으나, 인슐린 저항성에 미치는 영향은 명확하지 않다. 본 연구에서는 3T3-L1 지방세포에서 루페올의 IRS-1 인산화 억제능을 통해 인슐린 저항성 개선효과를 조사하였다. 3T3-L1 세포를 배양하고 TNF-α를 24시간 동안 처리하여 인슐린 저항성을 유도하였다. 서로 다른 농도의 루페올(15, 30 μM) 또는 100 nM의 rosiglitazone을 처리한 세포를 배양한 후, 용해된 세포를 이용하여 western blotting을 시행하였다. 실험결과 루페올은 지방세포에서 TNF-α에 의해 유발되는 인슐린 신호전달의 음성 조절자와 염증 활성화 단백질 kinase에 대한 개선 효과를 나타냈다. 인슐린 신호전달의 음성 조절자인 PTP-1B와 JNK의 활성 및 IKK와 염증활성화 단백질키나아제의 활성을 억제하였다. 또한, 루페올은 IRS-1의 serine 인산화는 하향 조절하고 tyrosine 인산화는 상향 조절하였다. 그 후, 하향 조절된 PI3K/AKT 경로가 활성화되고, GLUT 4의 세포막 전위가 자극되어, 결과적으로 인슐린 저항성이 유도된 3T3-L1 지방세포에서에서 세포내 포도당 흡수가 증가하였다. 본 연구결과, 루페올은 3T3-L1 지방세포에서 인슐린 신호전달 및 염증 활성화 단백질 kinsase들의 음성 조절인자를 억제하여, IRS-1의 serine 인산화를 하향 조절함으로써 TNF-α 유발 인슐린 저항성을 개선할 수 있을 것으로 사료된다.

Role of Protein Kinases on NE-$_{\kappa}B$ Activation and Cell Death in Bovine Cerebral Endothelial Cells

  • Ahn, Young-Soo;Kim, Chul-Hoon;Kim, Joo-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.11-18
    • /
    • 1999
  • Nuclear factor $_{\kappa}B\;(NF-_{\kappa}B)$ activation is modulated by various protein kinases. Activation of $NF-_{\kappa}B$ is known to be important in the regulation of cell viability. The present study investigated the effect of inhibitors of protein tyrosine kinase (PTK), protein kinase C (PKC) and protein kinase A (PKA) on $NF-_{\kappa}B$ activity and the viability of bovine cerebral endothelial cells (BCECs). In serum-deprivation-induced BCEC death, low doses of $TNF{\alpha}$ showed a protective effect. $TNF{\alpha}$ induced $NF-_{\kappa}B$ activation within 4 h in serum-deprivation. PTK inhibitors (herbimycin A and genistein) and PKC inhibitor (calphostin C) prevented $NF-_{\kappa}B$ activation stimulated by $TNF{\alpha}.$ Likewise, these inhibitors prevented the protective effect of $TNF{\alpha}.$ In contrast to $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activity, basal $NF-_{\kappa}B$ activity of BCECs in media containing serum was suppressed only by calphostin C, but not by herbimycin A. As well BCEC death was also induced only by calphostin C in serum-condition. H 89, a PKA inhibitor, did not affect the basal and $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activities and the protective effect of $TNF{\alpha}$ on cell death. These data suggest that modulation of $NF-_{\kappa}B$ activation could be a possible mechanism for regulating cell viability by protein kinases in BCECs.

  • PDF