• Title/Summary/Keyword: Tyrosine kinase

Search Result 533, Processing Time 0.031 seconds

Mutations in the tyrosine kinase domain of the EGFR gene are rare in the Korean Oral Squamous Cell Carcinoma

  • Lee, Eun-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.101-106
    • /
    • 2016
  • The epidermal growth factor receptor(EGFR) protein kinase signaling is an important pathway in cancer development and recently reported that EGFR and its kinase domain molecules are mutated in various of cancers including head and neck cancer. Functional deregulation of EGFR due to mutations in coding exons and copy number amplification is the most common event in cancers, especially among receptor tyrosine kinases(TK). We have analyzed Korean oral squamous cell carcinomas (OSCC) cell lines for mutations in EGFRTK. Exons encoding the hot-spot regions in the TK domain of EGFR (exons 17 to 23) were amplified by using polymerase chain reaction(PCR) and sequenced directly. EGFR expression was also analyzed in 8 OSCC cell lines using western blotting. Data analysis of the EGFR exons 17 to 23 coding sequences did not show any mutations in the 8 OSCC cell lines that were analyzed. The absence of mutations indicate that protein overexpression might be responsible for activation rather than mutation.

Tyrosine Kinase Inhibitors in Ph+ Chronic Myeloid Leukemia Therapy: a Review

  • Shah, Krupa;Parikh, Sonia;Rawal, Rakesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3025-3033
    • /
    • 2016
  • Chronic myeloid leukaemia (CML) is a clonal myeloproliferative hematopoietic stem cell disorder. Deregulated BCR-ABL fusion tyrosine kinase activity is the main cause of CML disease pathogenesis, making BCR-ABL an ideal target for inhibition. Current tyrosine kinase inhibitors (TKIs) designed to inhibit BCR-ABL oncoprotein activity, have completely transformed the prognosis of CML. Interruption of TKI treatment leads to minimal residual disease reside (MRD), thought to reside in TKI-insensitive leukaemia stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML either as small molecule master TKIs or phytopharmaceuticals derived from nature to achieve chronic molecular remission. This review outlines the past, present and future therapeutic approaches for CML including coverage of relevant mechanisms, whether ABL dependent or independent, and epigenetic factors responsible for developing resistance against TKIs. Appearance of mutant clones along the course of therapy either pre-existing or induced due to therapy is still a challenge for the clinician. A proposed in-vitro model of generating colony forming units from CML stem cells derived from diagnostic samples seems to be achievable in the era of high throughput technology which can take care of single cell genomic profiling.

The Impact of Drug Interactions with Tyrosine Kinase Inhibitors on Adverse Event Development based on the changes of drug concentration level: Meta-analysis (Tyrosine Kinase 억제제와의 약물 상호작용이 약물 혈중농도 변화에 따라 부작용 발생에 미치는 영향: 메타분석 연구)

  • JinAh Hwang;Heeyoung Lee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.34 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • Background: Oral cancer drugs, particularly tyrosine kinase inhibitors (TKIs), are increasingly popular due to their convenience. However, they pose challenges like drug interactions, especially with medications like azole antifungals. While the FDA provides some guidance, more detailed information is needed to manage these interactions effectively. A meta-analysis was conducted to understand the impact of interactions between TKIs and azole antifungals on adverse events during clinical studies. Methods: A meta-analysis followed PRISMA guidelines. Data from PubMed, EMBASE, and references were searched until November 30, 2021. Inclusion criteria encompassed studies on TKI-antifungal interactions in English. Study selection and quality assessment were conducted by two independent investigators. Results: Out of 158 articles, 11 were selected for analysis. Combination therapy showed a slight increase in adverse events but was not statistically significant (OR 1.02, 95% CI 0.49-2.13, p=0.95). AUC and Cmax fold changes did not significantly impact adverse event development. Both itraconazole and ketoconazole showed no significant difference in adverse event development compared to TKI alone. Conclusions: Study finds TKI-DDI not significantly linked to AE increase; azole antifungal types not related to AE. Future DDI research crucial for drug development.

Regulation of $Ca_v3.2Ca^{2+}$ Channel Activity by Protein Tyrosine Phosphorylation

  • Huh, Sung-Un;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.365-368
    • /
    • 2008
  • Calcium entry through $Ca_v3.2Ca^{2+}$ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect $Ca_v3.2Ca^{2+}$ channels reconstituted in Xenopus oocytes. We found that $Ca_v3.2$ channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of $Ca_v3.2$ currents were not significantly changed by the drugs. These results imply that $Ca_v3.2$ channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.

인슐린의 신호전달 기전 : Transcription Factor AP-1 의 역활

  • 김성진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.17-21
    • /
    • 1995
  • 대부분의 인슐린의 작용들은 인슐린 수용체를 통하여 이루어진다. 인슐린이 수용체에 결합하면, 수용체 고유의 tyrosine kinase 효소활성의 증가를 유발시키며, 결과적으로 세포내에 존재하는 기질 단백질, IRS-1, 의 tyrosine 잔기의 인산화를 증가시키게 된다. 이후, 여러 형태의 serine / threonine protein kinase 의 연속적인 활성화가 일어난다. 이들에 부가해서, 인슐린의 효자는 세포핵 내에까지 전달되어 유전자 발현의 조절과 같은 세포핵 고유의 활동에도 관여한다. 현재, 세포막에서 시작된 인슐린의 신호들이 세포핵까지 전달되는 정확한 기전에 대해서는 알려진 바 없지만, 최근의 연구에 의하면 MAP Kinase 와 S6 Kinase 그리고 Transcription Factor AP-1의 중요성이 제시되고 있다. 특히 유전자 조절 기전에는 핵단백질인 transcription factor의 인산화 반응이 큰 역할을 한다고 보고되고 있는바, 본 연구에서 AP-1. transcription factor 의 인산화 반응이 인슐린의 신호전달계에 미치는 역할에 대하여 고찰하였다. 요약하면, AP-1 transcription factor의 구성원인 c-Jun, c-Fos 그리고 Fos 관련 단백질들의 인산화가 인슐린에 의해 증가되며, 동시에 그들의. DNA-binding activity 와 유전자 발현의 활성이 증가됨을 밝힘으로써, AP-1 transcription factor의 인산화 반응이 인슐린의 핵 내에서의 작용기전에 중요한 역할을 함이 제시되고 있다. 또한 AP-1 의 인산화 반응에 관여하는 세포핵 protein kinase로서 Casein Kinase II 의 중요성이 밝혀졌다.

  • PDF

Effects of Protein Kinases on Phospholipase C Activation and Intracellular $Ca^{2+}$ Mobilization Induced by Endothelin-1 (Endothelin-1에 의한 phospholipase C 활성화와 세포내 $Ca^{2+}$ 이동에 미치는 protein kinase들의 효과)

  • 조중형;김현준;이윤혜;박진형;장용운;이승준;이준한;윤정이;김창종
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.162-168
    • /
    • 2000
  • To investigate the effects of protein kinases on endothelin-1-induced phospholipase C activation and $Ca^{2+}$ mobilization in Rat-2 fibroblast, we measured the formation of inositol phosphates and intracellular $Ca^{2+}$ concentration with [$^3$H]inositol and Fura-2/AM, respectively. Endothelin-1 dose-dependently activated phospholipase C and increased intracellular $Ca^{2+}$ concentration. Protein kinase C activator PMA, significantly inhibited both phospholipase C activity and $Ca^{2+}$ mobilization induced by endothelin-1. Tyrosine kinase inhibitor, genistein, inhibited both. On the other hand, cyclic nucleotide (cAMP and cGMP) did not have any influence on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1. These results suggest that protein kinase C and tyrosine kinase counteract on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1 in Rat-2 fibroblast. fibroblast.

  • PDF

Studies on the Activation Mechanism of c-src Protein Tyrosine Kinase by Ginsenoside-Rgl

  • Hong, Hee-Youn;Yoo, Gyung-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.133-139
    • /
    • 1998
  • We have studied an activation mechanism of $pp60^{c-src}$ protein tyroslne kinase (PTK) by ginsenoside-$Rg_1$ (G-$Rg_1$ ) in NIH(pMcsrc/foc)B c-src overexpressor cells. It was previously reported that G--$Rg_1$ stimulated the activation of c-src kinase at 20 pM with a 18 hr-incubation, increasing the activity by 2-4-fold over that of untreated control, and this effect was blocked by treatments of in- hibitors of either protein synthesis (cycloheximide) or RNA synthesis (actinomycin D) (Hong, H.Y. et at. Arch. Pharm. Res. 16, 114 (1993)). However, an amount of c-src protein itself in wild-type cells was not changed by G-$Rg_1$. When the cells mutated at one or two tyrosine residue(s) (Y416/527) that are important sites to regulate the kinase activity were treated with G-$Rg_1$, increases both in the activity of c-src kinase and in the expression of the protein were not observed. In addition, removal of extracellular calcium ion by EGTA or inhibition of PKC by H-7 canceled the G-$Rg_1$-induced activation of the kinase. Although the activation was little affected by G-$Rg_1$ with a calcium ionophore A23187, it was synergistically stimulated by treatment of G-Rgl and PMA, a PKC activator. Taken together, these results suggest that the activation of c-src kinase by G-$Rg_1$ is caused by an increase in the specific activity of the kinase, but not in amount of it, and is involved with both collular calcium ion and PKC. Further the increase in the specific activity of c-src kinase may result from altered phosphorylation at tyro-416 and -527.

  • PDF

PKD2 interacts with Lck and regulates NFAT activity in T cells

  • Li, Qing;Sun, Xiaoqing;Wu, Jun;Lin, Zhixin;Luo, Ying
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Protein kinase D2 (PKD2) is a member of the PKD serine/threonine protein kinase family that has been implicated in the regulation of a variety of cellular processes including proliferation, survival, protein trafficking and immune response. In the present study, we report a novel interaction between PKD2 and Lck, a member of the Src tyrosine protein kinase family that is predominantly expressed in T cells. This interaction involved the C-terminal kinase domains of both PKD2 and Lck. Moreover, co-expression of Lck enhanced the tyrosine phosphorylation of PKD2 and increased its kinase activity. Finally, we report that PKD2 enhanced T cell receptor (TCR)-induced nuclear factor of T cell (NFAT) activity in Jurkat T cells. These results suggested that Lck regulated the activity of PKD2 by tyrosine phosphorylation, which in turn may have modulated the physiological functions of PKD2 during TCR-induced T cell activation.

The Involvement of Protein Tyrosine Kinase in the Bacterial Lipopolysaccharide-Induced Arachidonic Acid Metabolism in Rat Alveolar Macrophages

  • Kim, Ji-Young;Lee, Soo-Hwan;Lee, Ji-Young;Moon, Chang-Hyun;Lim, Jong-Seok;Moon, Chang-Kiu
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.262-266
    • /
    • 1995
  • Bacterial lipopolysaccharide (LPS) is one of the most potent inducers of various cytokines nad other proinflammatory mediators in macrophages. Although pathophysiological consequences of LPS-induced responses are well established, the mechanisms through which LPS-generated singals are transduced remain unclear. In the present study, we attempted to determine early intracellular events after LPS binding which transduced the signal for the induction of arachidonic acid metabolism in rat alveolar macrophages. While H-7, a protein kinase C(PKC) inhibitor, did not affect LPS-stimulated prostaglandin synthesis, staurosporine enhanced archidonic acid etabolism in macropahages treated with LPS. Phorbol-12-myristate-13 acetate snesitive to LPS compare with control group. PMA and H-7 did not alter the effect of flucose. Pertussis toxin did not show nay effect, thus pertussis toxin snesitive G-protein pathway appears not to play a role in this experimental system. Genistein and tyrphostin 25, protein tyrosine kinase 9PTK) inhibitors, markedly inhibited prostaglandin synthesis in macrophages nal transduction events leading to icnreased macrophage arachidonic acid metabolism.

  • PDF

Molecular Involvement and Prognostic Importance of Fms-like Tyrosine Kinase 3 in Acute Myeloid Leukemia

  • Shahab, Sadaf;Shamsi, Tahir S.;Ahmed, Nuzhat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4215-4220
    • /
    • 2012
  • AML (Acute myeloid leukemia) is a form of blood cancer where growth of myeloid cells occurs in the bone marrow. The prognosis is poor in general for many reasons. One is the presence of leukaemia-specific recognition markers such as FLT3 (fms-like tyrosine kinase 3). Another name of FLT3 is stem cell tyrosine kinase-1 (STK1), which is known to take part in proliferation, differentiation and apoptosis of hematopoietic cells, usually being present on haemopoietic progenitor cells in the bone marrow. FLT3 act as an independent prognostic factor for AML. Although a vast literature is available about the association of FLT3 with AML there still is a need of a brief up to date overview which draw a clear picture about this association and their effect on overall survival.