• Title/Summary/Keyword: Typhula snow mold

Search Result 7, Processing Time 0.019 seconds

Aggressiveness of Three Snow Mold Fungi on Creeping Bentgrass Cultivars under Controlled Environment Conditions

  • Chang, Seog-Won;Jung, Geun-Hwa
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2009
  • Snow molds are the most important winter diseases of turfgrass in the United States and Canada. Eight isolates of three snow mold fungal species (three isolates of Typhula ishikariensis, three of T. incarnata, and two of Microdochium nivale) were collected from infected turfgrasses on golf courses. The isolates were evaluated for their relative aggressiveness on three cultivars (L-93, Penncross, and Providence) of creeping bentgrass (Agrostis palustris) under the same controlled conditions. Four plant ages (15, 19, 23 and 27 week-old plants from germination to inoculation) were evaluated for their susceptibility to the three pathogens and for the recovery of the plants. Regardless of age or cultivar of the host plant, M. nivale was found to be more aggressive and faster to infect and colonize than Typhula species. After three weeks recovery, M. nivale-inoculated plants showed higher disease severity than plants inoculated with the two Typhula species. Plants infected by Typhula species displayed no significant difference in disease severity. As creeping bentgrass plants get older, the severity of disease caused by three snow molds gradually decreases. This effect was observed in all cultivars tested, suggesting expression of age-related resistance as the bentgrass plants matured.

Evaluation of Fungicides for Control of Gray Snow Mold Caused by Typhula incarnata on Cool Season Turfgrass (한지형 잔디의 설부소립균핵병 방제를 위한 살균제 평가)

  • Chang, Tae-Hyun;Lee, Seung-Jun
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.102-109
    • /
    • 2012
  • Commercial formulation of fungicides was studied in the golf course for evaluation against Typhula incarnata causal agents of gray snow mold. Efficacies of fungicides application, fungicide mixture, fungicides applied method (irrigation and spray) and fungicides applied time (early fall and late fall) were evaluated for their influence on the chemical control of gray snow mold of turfgrass during the winter season in Yongpyeong golf course, Korea. Unsprayed control has significantly more disease severity than three fungicides (azoxystrobin, propiconazole, and tebuconazole) were applied to field plots. Effect of three fungicides was over 80% with control value for controlling gray snow mold on Kentucky bluegrass and creeping bentgrass species. Effect of fungicide mixture with different family groups had an over 93% control value of gray snow mold on Kentucky bluegrass species. It was not significantly difference in fungicidal effect according to applied method (irrigation and spray) with azoxystrobin on Kentucky bluegrass and creeping bentrasss species. Effect of fungicides applied time was a significantly difference on disease control by tebconazole early fall spray.

Genetic Relationships among Typhula ishikariensis Varieties from Wisconsin

  • Chang, Seog-Won
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.135-143
    • /
    • 2015
  • Typhula ishikariensis Imai is a causal agent of Typhula snow mold, one of the most important turfgrass diseases in northern regions of the United States. Within Wisconsin isolates, there are three district groups clustered with known isolates of T. ishikariensis var. ishikariensis, var. canadensis and var. idahoensis as identified by RAPD markers. To further investigate the genetic relationship among these groups (varieties), monokaryon-monokaryon and dikaryon-monokaryon mating experiments were conducted. Mating types from var. ishikariensis, var. canadensis and var. idahoensis isolates were paired in all possible combinations. Pairings between var. canadensis and var. idahoensis were highly compatible, while no compatibility was detected between var. ishikariensis and either var. canadensis or var. idahoensis. These results indicate that var. ishikariensis is genetically separated from var. canadensis and var. idahoensis, whereas var. canadensis and var. idahoensis appeared to be genetically related to each other as a taxonomic unit. In the genetic relationship with the known biological species, var. ishikariensis and var. canadensis were genetically related to biological species I and II, respectively. However, var. idahoensis was not compatible with any of the biological species, suggesting that the pathogen may be in the process of biological speciation from var. canadensis.

Identification and Chemical Control of Gray Snow Molds Caused by Typhula spp. on Golf Course in Korea (우리나라의 골프코스에서 Typhula spp.에 의해 발생하는 설부병의 동정 및 방제)

  • Kim, Jeong-Ho;Shim, Gyu-Yul;Lee, Hye-Min;Moon, Hyo-Sun;Kim, Young-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.147-154
    • /
    • 2007
  • In March of 2004, gray snow mold (Typhula blight) caused by Typhula spp. occurred on perennial ryegrass (Lolium perenne L.) and Kentucky bluegrass (Poo pratensis L.) at MuJu golf courses in Jeonbuk Province. Leaves in the affected areas were matted together and frequently covered with white to grayish mycelia. Sclerotia were formed on the leaf blade, leaf sheath, or crown regions. The fungus isolated from the diseased leaf formed whitish mycelium, clamp connections, and light pink to brown, irregular-shaped small sclerotia of less than 1.4 mm in diameter, which are characteristic to Typhula incarnata. Optimum temperature ranges for mycelial growth were $5^{\circ}C$ to $15^{\circ}C$. The causal organism was confirmed to be T. incarnata as the partial sequence of its ribosomal RNA ITS1 (internal transcribed spacer) region was 91% homologous to those of T. incarnata in GenBank database. Out of the 14 fungicides tested fur antifungal activity in vitro, 10 fungicides including iprodione, tebuconazole, polyoxin D, flutolanil, hexaconazole, tolclofos-methyl, fosetyl-Al, mepronil, pencycuron+tebuconazole, and fenarimol completely inhibited fungal growth at their recommended concentrations. In the field test, these fungicides and others such as thifluzamide and thiram effectively controlled the gray snow mold of turfgrass with some variable degrees of control efficacies.

Sensitivity to Fungicides of Typhula incarnata Isolates Causing Gray Snow Mold (설부소립균핵병균 Typhula incarnata의 살균제 감수성)

  • Lee, Seong Jun;Lee, Dong Woon;Chang, Taehyun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.69-75
    • /
    • 2012
  • In response of fungicides for control of gray snow mold, isolates of Typhula incarnata were collected from three golf courses in 2012 Yongpyeong, Korea and tested for sensitivity to propiconazole, tebuconazole and azoxystrobin fungicides. Four discriminatory concentrations were used to detect in vitro sensitivity of 50 isolates. Mean 50% effective concentration inhibiting mycelial growth ($EC_{50}$) values for tebuconazole was the lowest among the three fungicides. The $EC_{50}$ value of tebuconazole ranged from 0.0005 ${\mu}g\;ml^{-1}$ to 0.014 ${\mu}g\;ml^{-1}$ with a mean of 0.0048 ${\mu}g\;ml^{-1}$. The mean $EC_{50}$ values of propiconazole in triazole family was 0.5825 (0.78-1.651) ${\mu}g\;ml^{-1}$. $EC_{50}$ value of azoxystrobin ranged from 0.0017 ${\mu}g\;ml^{-1}$ to 0.131 ${\mu}g\;ml^{-1}$ with a mean of 0.0278 ${\mu}g\;ml^{-1}$. There was no correlation among $EC_{50}$ values for propiconazole, azoxystrobin and tebuconazole indicating no cross-resistance relationships with each other. Results of this study were confirmed no resistance isolates in vitro sensitivity of T. incarnata of three fungicides in Yongpyeong.

Studies on the Ecology of Occurrence and Identification of Typhula Snow Mold of Graminous Plants -II. Several Factors Affecting Growth of Typhula incarnata- (화본과식물에 발생하는 설부소입균핵병균(雪腐小粒菌核病菌)의 동정 및 발생상태에 관한 연구 -II. Typhula incarnata의 생육에 미치는 몇 가지 요인-)

  • Kim, Jin-Won;Lee, Du-Hyung;Shim, Gyu-Yul
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Typhula incarnata grew over a temperature range of -5 to $20^{\circ}C$ with maximum growth at 10 to $15^{\circ}C$. Sclerotial production for T. incarnata was greatest at the higher temperature. Maximum mycelial growth of this pathogen occurred from pH 5.4 to 6.2. When carbon sources were added to a basal salt medium (Czapek's dox agar) at 5 g carbon sources/l, inulin, soluble starch, galactose, glucose, mannose, manitol, sucrose, maltose, cellobirose, trehalose, raffinose, and dextrin supported growth better than other carbon sources did. Of the twenty-three nitrogen sources tested, glycine, serine, ammonium sulfate, asparagine, asparatic acid, and ${\beta}-alanine$ were the most favorable for mycelial growth of T. incarnata. Cystine and cysteine were poor nitrogen sources. Ammonium salt of nitrogen sources supported growth better than nitrate salt of nitrogen sources. Potato dextrose agar, oat meal agar, and V-8 juice agar were the most favorable for mycelial growth and sclerotial formation. Appropriate addition of pepton to PDA decreased mycelial dry weight, but sucrose supported good growth of T. incarnata. Percent viable sclerotia of T. incarnate buried in bentgrass soil decreased from 2 months after treatment remarkably. Trichoderma riride and bacteria were isolated from non-germinated sclerotia. Live orchard grass leaf pieces within the soil were colonized by T. incarnata better than sterile and unsterile dead leaf pieces at $0^{\circ}C$. Saprophytic ability of T. incarnate on sterile leaf sheath occurred better at $0^{\circ}C$ than at $10^{\circ}C$. Saprophytic microflora consisting of Cladosporium sp., Fusarium sp., Mucor sp., Pythium sp., and unidentified fungi were the competitors for the sterilized and unsterilized substrate, but their colonization was not find on live leaf sheath buried in the soil at $0^{\circ}C$. In the effect of fungicides to Typhula snow mold disease of creeping bentgrass, mixture of polyoxin and thiram was the most effective, followed by iprodione, mixture of iprodione and oxine copper, thiophanate-methyl, myclobutanil, and tolclofos-methyl.

  • PDF

Resistance Evaluation of Several Turfgrass Species and Graminious Crop Species against Rhizoctonia cerealis and Typhula incarnata under Controlled Conditions (주요 잔디류와 화본과 식량 밭작물의 황색마름병원균 및 설부소립균핵병원균에 대한 저항성 평가)

  • Chang, Seog-Won;Chang, Tae-Hyun;Yang, Geun-Mo;Choi, Joon-Soo;Rho, Yong-Taek
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • During 2008~2009 winter season, yellow patch and gray snow mold occurred on turfgrass plants in golf courses in Kangwon and Jeonbuk provinces, respectively. The fungi associated with the diseases were identified as Rhizoctonia cerealis Van der Hoeven and Typhlua incarnata Lasch ex Fr., based on the morphological characteristics of hyphae and sclerotia. R. cerealis and T. incarnata were pathogenic to most turfgrass and crop species tested. R. cerealis infected crown, stem and leaf tissue of the host plants, and the symptom was light yellow circular patch. Individual infected leaf near the margin of patch developed red color first and finally turn brown. The symptoms caused by gray snow mold pathogen are water-soaked spots, and became a watery soft rot. Infection parts became yellow and then turned brown followed by death of the whole plant. White mycelia were developed on higher petioles, leaves, and on soil where these plant parts lay, and black sclerotia of variable size and shape formed in the mycelial mass. All isolates tested were pathogenic on most turfgrass and crop plants, and significantly different in aggressiveness. Disease severity increased with longer snow cover days on target plants, suggesting that disease severity was expressed over snow cover days. There were significant differences in disease severity among the graminious species, and among cultivars within each species, indicating varying levels of susceptibility to R. cerealis and T. incarnata.