• Title/Summary/Keyword: Typhoon wind

Search Result 398, Processing Time 0.026 seconds

An Analysis of the Impact of Building Wind by Field Observation in Haeundae LCT Area, South Korea: Typhoon Omais in 2021

  • Byeonggug Kang;Jongyeong Kim;Yongju Kwon;Joowon Choi;Youngsu Jang;Soonchul Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.380-389
    • /
    • 2022
  • In the Haeundae area of Busan, South Korea, damage has continued to occur recently from building wind from caused by dense skyscrapers. Five wind observation stations were installed near LCT residential towers in Haeundae to analyze the effect of building winds during typhoon Omais. The impact of building wind was analyzed through relative and absolute evaluations. At an intersection located southeast of LCT (L-2), the strongest wind speed was measured during the monitoring. The maximum average wind speed for one minute was observed to be 38.93 m/s, which is about three times stronger than at an ocean observation buoy (12.7 m/s) at the same time. It is expected that 3 to 4 times stronger wind can be induced under certain conditions compared to the surrounding areas due to the building wind effect. In a Beaufort wind scale analysis, the wind speed at an ocean observatory was mostly distributed at Beaufort number 4, and the maximum was 8. At L-2, more than 50% of the wind speed exceeded Beaufort number 4, and numbers up to 12 were observed. However, since actual measurement has a limitation in analyzing the entire range, cross-validation with computational fluid dynamics simulation data is required to understand the characteristics of building winds.

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Development and Verification of a Rapid Refresh Wave Forecasting System (초단기 파랑예측시스템 구축 및 예측성능 검증)

  • Roh, Min;La, NaRy;Oh, SangMyeong;Kang, KiRyong;Chang, PilHun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.340-350
    • /
    • 2020
  • A rapid refresh wave forecasting system has been developed using the sea wind on the Korea Local Analysis and Prediction System. We carried out a numerical experiment for wind-wave interaction as an important parameter in determining the forecasting performance. The simulation results based on the seasons of with typhoon and without typhoon has been compared with the observation of the ocean data buoy to verify the forecasting performance. In case of without typhoon, there was an underestimate of overall forecasting tendency, and it confirmed that an increase in the wind-wave interaction parameter leads to a decrease in the underestimate tendency and root mean square error (RMSE). As a result of typhoon season by applying the experiment condition with minimum RMSE on without typhoon, the forecasting error has increased in comparison with the result without typhoon season. It means that the wave model has considered the influence of the wind forcing on a relatively weak period on without typhoon, therefore, it might be that the wave model has not sufficiently reflected the nonlinear effect and the wave energy dissipation due to the strong wind forcing.

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea (56년간 한반도 강수 및 풍속의 극값 변화)

  • Choi, Eu-Soo;Moon, Il-Ju
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

Wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.293-314
    • /
    • 2015
  • In this paper, wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge is presented. Firstly, cable-stayed bridge with the wireless monitoring system is described. Wireless vibration sensor nodes are utilized to measure accelerations from bridge deck and stay cables. Also, modal analysis methods are selected to extract dynamic characteristics. Secondly, dynamic responses of the cable-stayed bridge under the attack of two typhoons are analyzed by estimating relationships between wind velocity and dynamic characteristics. Wind-induced variations of deck and cable vibration responses are examined based on the field measurements under the two consecutive typhoons, Bolaven and Tembin. Finally, time-varying analyses are performed to investigate non-stationary random properties of the dynamic responses under the typhoons.

The Effect of Wind (Typhoon), Tide and Solar Radiation for the Water Stratification at Deukryang Bay in Summer , 1992 (하계 득량만의 연직혼합과 관련된 바람 (태풍), 조석, 태양에너지의 영향)

  • Lee, Byung-Gul;Cho, Kyu-Dae;Hong, Chol-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.256-263
    • /
    • 1995
  • This paper presents the evidence on the considerably strong stratification - destratification(SD) phenomena during spring - neap tidal cycle in summer of 1992 based on the observed temperature, salinity and density data. To find out the main factors causing SD in the bay, we computed the rate of potential energy balance of the surface heat flux, tidal and wind stirring proposed by Simpson and Hunter (1974) and Simpson and Bowders (1981) using observed data. It was found that the energy of the wind stirring was one - order smaller than those of the heat flux and the tidal stirring. It means that the variation of stratification phenomena in the bay mainly depend on tidal stirring and sea surface heating in summer if there was no exceptionally strong wind event like a typhoon. Finally, we tested the effects of typhoon on the mixing characteristics of the bay using the example of a empirical typhoon model. It was found that when wind speed is larger than 15m/sec in Deukryang Bay, the wind energy was always larger than the average heating energy based on empirical typhoon model test. Particularly, typhoon passed on the left side of the bay, strong wind energy happened, which is almost the same as tidal energy of spring tide.

  • PDF

Estimate of Recent Typhoon Maemi· Kompasu·Tembin (최근 태풍 매미·곰파스·템빈의 평가)

  • Oh, Jong Seop;Ryu, Ji Hyeob;Lim, Ik Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • This study is concerned with the estimation of fluctuation wind velocity spectrum and turbulence characteristics in the major cities reflecting the recent meteorological with typhoon wind velocity about 2003 (Maemi) 2010 (Kompasu) 2012 (Tembin). The purpose of this paper is to present spectral analysis for longitudinal component fluctuating velocity. In the processes of analysis, the longitudinal velocity spectrums are compared widely used spectrum models with horizontal wind velocity observations data obtained at Korea Meteorological Adminstration (KMA) and properties of the atmospheric air for typhoon fluctuating wind data are estimated to parameters with turbulency intensity, shear velocity and roughness length.

Guide plates on wind uplift of a solar collector model

  • Chung, K.M.;Chang, K.C.;Chen, C.K.;Chou, C.C.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2013
  • One of the key issues affecting the promotion of solar water heaters in Taiwan is the severe impact of typhoon each year. An experimental study was conducted to investigate the wind uplift characteristic of a solar collector model with and without a guide plate. The guide plate with different lengths and orientations with respect to wind direction was adopted. It is found that the wind uplift of a solar collector is associated with the tilt angle of the flat panel as expected. A cavity formed between the guide plate and the flat panel has a significant effect on the distributions of streamwsie and lateral pressure. Reduction in uplift is essentially coupled with the projected area of a guide plate on the lower surface of the tilt flat panel.

Sensitivity Analysis of Wind-Wave Growth Parameter during Typhoon Season in Summer for Developing an Integrated Global/Regional/Coastal Wave Prediction System (전지구·지역·국지연안 통합 파랑예측시스템 개발을 위한 여름철 태풍시기 풍파성장 파라미터 민감도 분석)

  • Oh, Youjung;Oh, Sang Meong;Chang, Pil-Hun;Kang, KiRyong;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.179-192
    • /
    • 2021
  • In this study, an integrated wave model from global to coastal scales was developed to improve the operational wave prediction performance of the Korean Meteorological Administration (KMA). In this system, the wave model was upgraded to the WaveWatch III version 6.07 with the improved parameterization of the source term. Considering the increased resolution of the wind input field and the introduction of the high-performance KMA 5th Supercomputer, the spatial resolution of global and regional wave models has been doubled compared to the operational model. The physical processes and coefficients of the wave model were optimized for the current KMA global atmospheric forecasting system, the Korean Integrated Model (KIM), which is being operated since April 2020. Based on the sensitivity experiment results, the wind-wave growth parameter (βmax) for the global wave model was determined to be 1.33 with the lowest root mean square errors (RMSE). The value of βmax showed the lowest error when applied to regional/coastal wave models for the period of the typhoon season when strong winds occur. Applying the new system to the case of August 2020, the RMSE for the 48-hour significant wave height prediction was reduced by 13.4 to 17.7% compared to the existing KMA operating model. The new integrated wave prediction system plans to replace the KMA operating model after long-term verification.