• 제목/요약/키워드: Typhoon intensity

검색결과 139건 처리시간 0.029초

Wind characteristics of a strong typhoon in marine surface boundary layer

  • Song, Lili;Li, Q.S.;Chen, Wenchao;Qin, Peng;Huang, Haohui;He, Y.C.
    • Wind and Structures
    • /
    • 제15권1호
    • /
    • pp.1-15
    • /
    • 2012
  • High-resolution wind data were acquired from a 100-m high offshore tower during the passage of Typhoon Hagupit in September, 2008. The meteorological tower was equipped with an ultrasonic anemometer and a number of cup anemometers at heights between 10 and 100 m. Wind characteristics of the strong typhoon, such as mean wind speed and wind direction, turbulence intensity, turbulence integral length scale, gust factor and power spectra of wind velocity, vertical profiles of mean wind speed were investigated in detail based on the wind data recorded during the strong typhoon. The measured results revealed that the wind characteristics in different stages during the typhoon varied remarkably. Through comparison with non-typhoon wind measurements, the phenomena of enhanced levels of turbulence intensity, gust factors, turbulence integral length scale and spectral magnitudes in typhoon boundary layer were observed. The monitored data and analysis results are expected to be useful for the wind-resistant design of offshore structures and buildings on seashores in typhoon-prone regions.

Wind characteristics of Typhoon Dujuan as measured at a 50m guyed mast

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • 제9권5호
    • /
    • pp.387-396
    • /
    • 2006
  • This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to compare with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).

Near-ground boundary layer wind characteristics analysis of Typhoon "Bailu" based on field measurements

  • Dandan Xia;Li Lin;Liming Dai;Xiaobo Lin
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, detailed wind field data of the full path of typhoon "Bailu" were obtained based on site measurements. Typhoon "Bailu" made first landfall southeast of the Taiwan Strait with a wind speed of approximately 30 m/s near the center of the typhoon eye and a second landfall in Dongshang County in Fujian Province. The moving process is classified into 3 regions for analysis and comparison. Detailed analyses of wind characteristics including wind profile, turbulence intensity, gust factor, turbulence integral scale and wind power spectral density function at the full process of the typhoon are conducted, and the findings are presented in this paper. Wind speed shows significant dependence on both the direction of the moving path and the distance between the typhoon center and measurement site. Wind characteristics significantly vary with the moving path of the typhoon center. The relationship between turbulence intensity and gust factor at different regions is investigated. The integral turbulence scales and wind speed are fitted by a Gaussian model. Such analysis and conclusions may provide guidance for future bridge wind-resistant design in engineering applications.

발생 해역별 태풍의 수와 세기에 관한 연구 (A Study on Typhoon Numbers and Intensity According to the Sea Areas of Occurrence)

  • 설동일
    • 한국항해항만학회지
    • /
    • 제33권10호
    • /
    • pp.679-683
    • /
    • 2009
  • 최근 22년간(1986-2007년)의 기상청 자료를 이용하여 태풍의 발생 해역별(A해역: 캐롤라인 마샬군도 부근 해역, B해역 : 북위 20도 이북 해역, C해역 : 필리핀 근해, D해역 : 남중국해)로, 태풍의 발생 수 및 세기에 관하여 분석하였다. 태풍의 연평균 발생 수는 26.3개로, 모든 해역에서 공통적으로 감소하는 추세를 보인다. 특히, A해역에서 감소 추세가 현저하고, D해역에서는 감소 추세가 미미하다. 태풍이 가장 많이 발생하는 해역은 A해역(연평균 13.8개, 전체의 약 53%)이고, 그 다음은 C해역(5.6개, 약 21%), B해역(3.8개, 약 14%), D해역(3.1개, 약 12%)의 순서이다. 태풍의 세기는 A해역에서 발생하는 것이 가장 강하고(중심최저기압의 평균 951hPa), 그 다음은 C해역(970hPa), B해역(975hPa), D해역(983hPa)의 순서이다. 그리고 전 해역을 대상으로 하여 연평균 중심최저기압의 시계열 분포를 살펴보면, 태풍의 중심최저기압은 미세하게 하강하는 추세를 보인다. 이는 태풍의 세기가 서서히 강해지고 있음을 의미한다. 금번의 연구 결과는 지구 온난화에 따른 태풍의 수와 세기의 변화에 대한 여러 수치실험 결과와 일치한다.

TRMM TMI 관측과 태풍 강도와의 관련성 (Relationship between Tropical Cyclone Intensity and Physical Parameters Derived from TRMM TMI Data Sets)

  • 변재영
    • 대한원격탐사학회지
    • /
    • 제24권4호
    • /
    • pp.359-367
    • /
    • 2008
  • 마이크로파 센서로부터 산출된 물리량과 태풍강도와의 관련성을 2004년 6월에서 9월까지 관측된 태풍과 TRMM TMI 자료를 이용하여 조사하였다. TMI 관측으로부터 산출된 85 GHz 밝기온도(TB), 편광보정온도(PCT), 총 수증기량, 얼음, 강우강도, 잠열방출량은 RMSC-Tokyo의 태풍 best-track 데이터베이스의 최대 풍속으로 정의된 태풍강도와 상관분석을 실시하였다 TB와 태풍강도의 최대 상관계수는 태풍 중심으로부터 반경 2.5도 공간평균을 하였을 때 $-0.2{\sim}-0.4$를 나타냈다. 총 수증기량, 강우강도, 잠열방출량과 태풍강도와의 상관계수는 $0.2{\sim}0.4$를 보였다. 태풍 강도 크기에 따른 상관계수 분포는 태풍 발달의 초기 단계에서는 열대성 저기압 중심으로부터 반경 $1.0{\sim}1.5$도 공간 평균을 하였을 때 최대값을 보였으나 태풍이 가장 크게 발달하였을 때는 태풍 중심에서 반경 0.5도의 공간 평균을 하였을 때 최대 상관성이 나타났다. 최대 상관계수를 나타낸 변수와 공간 규모는 회귀분석으로부터 태풍을 강도를 산출할 수 있으며 태풍 Rusa(2002)와 Maemi(2003)에 적용하였다. 태풍 강도의 오차는 태풍 강도 크기를 고려한 85GHz TB와 총 수증기량의 다중 회귀에서 최소를 보였다. 본 연구는 마이크로파 위성 관측의 TB와 총 수중기량으로부터 태풍 강도 산출에 기여할 수 있음을 지시한다.

2008년 태풍 특징 (Characteristics of Tropical Cyclones over the Western North Pacific in 2008)

  • 차은정;황호성;양경조;원성희;고성원;김동호;권혁조
    • 대기
    • /
    • 제19권2호
    • /
    • pp.183-198
    • /
    • 2009
  • The purpose of this study is to summarize the tropical cyclone (TC) activity of 2008 over the western North Pacific including the verification of the official track and intensity forecast errors of these TCs. The TC activity - frequency, Normalized Typhoon Activity (NTA), and life span - was lower than 58-year (1951-2008) average. 22 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2008. The total number is less than 58-year average frequency of 26.4. Out of 22 tropical cyclones, 11 TCs reached typhoon (TY) intensity, while the rest 11 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - six STS and five TS storms. One typhoon KALMAEGI (0807) among them affected the Korea peninsula. However, no significant impact - casualty or property damage - was reported. On average of 22 TCs in 2008, the Korea Meteorological Administration (KMA) official track forecast error for 48 hours was 229 km. There was a big challenge for individual cyclones such as 0806 FENGSHEN and 0817 HIGOS presenting significant forecast error, with both intricate tracks and irregular moving speed. The tropical cyclone season in 2008 began in April with the formation of NEOGURI (0801). In May, four TCs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to August. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2008 summertime. The 2008 TC activity has continued the below normal state since mid 1990s which is apparent the decadal variability in TC activity.

레이더에 의한 개선된 강우강도와 면적 강우량의 실시간 추정 (Improvement of Radar Rainfall Intensity and Real-time Estimation of Areal Rainfall)

  • 정성화;김경익;김광섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.643-646
    • /
    • 2006
  • An operational calibration is applied to improve radar rainfall intensity using rainfall obtained from rain gauge. The method is applied under the assumption of the temporal continuity of rainfall, the rainfall intensity from rain gauge is linearly related to that from radar. The method is applied to the cases of typhoon and rain band using the reflectivity of CAPPI at 1.5km obtained from Jindo radar. The CAPPI is obtained by bilinear interpolation. For the two cases, the rainfall intensities obtained by operational calibration are very consistent with the ones by the rain gauges. The present study shows that the correlation between the rainfall intensity by operational calibration and rain gauges is better than the one between the rainfall intensity by M-P relationship and rain gauges. The correlation coefficients between the total rainfall intensity obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.99 and 0.97, respectively. Areal rainfalls are estimated using the field of calibration factor interpolated by Barnes objective analysis. The method applied here shows an improvement in the areal rainfall estimation. For the cases of typhoon and rain band, the correlation between the areal rainfall by operational calibration and rain gauges is better than the one between the area rainfall by M-P relationship and rain gauges. The correlation coefficients between the areal rainfall obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.97 and 0.84, respectively. The present study suggests that the operational calibration is very useful for the real-time estimation of rainfall intensity and areal rainfall.

  • PDF

태풍 강도와 발생지역의 상관성 연구: ENSO 발달과 소멸의 영향 (On the Relationship between Typhoon Intensity and Formation Region: Effect of Developing and Decaying ENSO)

  • 장새롬;하경자
    • 한국지구과학회지
    • /
    • 제29권1호
    • /
    • pp.29-44
    • /
    • 2008
  • 본 연구에서는 El $Ni{\tilde{n}}o$-Southern Oscillation(ENSO) 발달과 소멸의 영향에 따른 태풍 강도와 태풍 발생지역의 상관성을 살펴보았다. 1950년부터 2006년까지의 장기간 자료를 이용하였으며, 먼저 엘니뇨 발달해와 정상해를 정의하였다. 엘니뇨 발달해 동안에 태풍 강도와 태풍 발생지역이 높은 상관성을 나타내고 이는 누적 저기압 에너지와 태풍 에너지 강도가 증가한 결과이다. $Ni{\tilde{n}}o$ 3.4 지역의 해수면 온도를 기준으로 한 경우 엘니뇨 발달해에는, category 4+5에 해당하는 태풍의 발생지역이 동쪽으로 치우쳐 나타난다. 태풍 발생 잠재 함수와 하층의 저기압성 회전성은 태풍급에 해당하는 강도로 발달할 수 있는 강한 열대성 저기압의 발생에 중요한 요소가 된다. 본 논문에서는 역학적 잠재력[DP, Gray(1977)]과 MJO의 EOF 첫 번째 모드와 두 번째 모드의 시계열에 해당하는 RMM1, RMM2 (Wheeler and Hendon, 2004)를 이용하여 태풍 발생의 잠재함수와 대기 하층의 저기압성 회전성을 측정하였다. ENSO가 발달하는 해와 소멸하는 해와 영향을 찾아보기 위하여 엘니뇨가 소멸이 급격히 일어나 라니냐로 전환되는 Type I과 정상해로 회복하는 Type II를 정의하였다. Type I의 엘니뇨 소멸기간 동안에는 DP값과 RMM1, RMM2의 발달이 현저하게 서쪽으로 치우쳐 나타나며 강한 태풍의 발달을 지체시킴을 알 수 있었다.

Logic tree approach for probabilistic typhoon wind hazard assessment

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.607-617
    • /
    • 2019
  • Global warming and climate change are increasing the intensity of typhoons and hurricanes and thus increasing the risk effects of typhoon and hurricane hazards on nuclear power plants (NPPs). To reflect these changes, a new NPP should be designed to endure design-basis hurricane wind speeds corresponding to an exceedance frequency of $10^{-7}/yr$. However, the short typhoon and hurricane observation records and uncertainties included in the inputs for an estimation cause significant uncertainty in the estimated wind speeds for return periods of longer than 100,000 years. A logic-tree framework is introduced to handle the epistemic uncertainty when estimating wind speeds. Three key parameters of a typhoon wind field model, i.e., the central pressure difference, pressure profile parameter, and radius to maximum wind, are used for constructing logic tree branches. The wind speeds of the simulated typhoons and the probable maximum wind speeds are estimated using Monte Carlo simulations, and wind hazard curves are derived as a function of the annual exceedance probability or return period. A logic tree decreases the epistemic uncertainty included in the wind intensity models and provides reasonably acceptable wind speeds.

태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향 (A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact)

  • 정영윤;문일주;김성훈
    • 대기
    • /
    • 제23권2호
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.