• Title/Summary/Keyword: Typhoon Simulation

Search Result 176, Processing Time 0.026 seconds

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact (태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향)

  • Jeong, Yeong Yun;Moon, Il-Ju;Kim, Sung-Hun
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

Frequency Analysis on Surge Height by Numerical Simulation of a Standard Typhoon (표준태풍 모의를 통한 해일고 빈도해석)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.284-291
    • /
    • 2016
  • A standard typhoon, which results in extreme wind speeds having various return period, can be reconstructed by combination of typhoon parameter informations(Kang et al., 2016). The aim of this study is to present a kind of surge-frequency analysis method by numerical simulation of a standard typhoon at Yeonggwang. MIKE21 was adopted as a numerical model and was proved to simulate the surge phenomena of the typhoon BOLAVEN(1215) well at several sites of the Western Coast. The simulation results with change of typhoon track which reflects typhoon-surge characteristics of the Western Coast show to have something in common with the observational results. This method is considered to be very efficient method on the point of simulating only one typhoon, while existing methods need to simulate a lot of typhoons.

A Qualitative Analysis of WRF Simulation Results of Typhoon 'Rusa' Case (태풍 루사와 관련된 WRF의 수치모의 결과 분석)

  • Kim, Jin-Won;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.393-405
    • /
    • 2007
  • Simulation results of WRF for the case of typhoon 'Rusa' were analyzed, comparing with observed data especially forjavascript:confirm_mark('abe', '1'); the Gangneung area around to examine its ability in numerical simulation. From the hourly precipitation time series, two peaks were found at Gangneung and Daegwallyeong, while only one peak was found from those of inland regions else. Especially, for the Yeongdong region, the first peak was directly related to spiral bands generated in front of the typhoon. Convective cells that were developed within the spiral bands moved to the eastern coastal area from the sea so that local heavy rainfall occurred in the Yeongdong region. The second peak was mainly related to the accompanying rain band of typhoon itself, topographic effect and the convergence near Gangneung area. Precipitation in Gangneung was simulated as much as about 30% of observed one. The main reason of this result came from a poor representation of wind directions in Gangneung area of WRF model. Observed wind direction was northwesterly but simulated one was nearly easterly in the area. This might shift a local heavy rainfall area downstream to the mountain area rather than the coastal area.

Design and Research for Intelligent Typhoon Evasion System for Ships

  • Wang, Jing-Quan;He, Yi;Shi, Ping-An;Peng, Xiao-Hong;Xu, Zu-Yuan;Qin, Shan-Ci;Li, Qing-Lie;Ding, Bing-Lin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.177-186
    • /
    • 2001
  • Based upon the previous experiences and typical oases of typhoon evasion fur ships as well as tile achievement in scientific research in this detrain, we developed the Intelligent Typhoon Evasion System for Ships. It consists of five subsystems, including electronic charts, ship movement management, typhoon information query and automatic plotting, real-time calculation of ship-typhoon situation, intelligent typhoon evasion decision making. With the synthetical application of analogy theory, synoptic chart, satellite cloud picture analysis, typhoon digital forecast and other relevant technologies, we leave established the typhoon evasion data bases. model bases and knowledge bases, which make it possible to automatically track the ships and typhoon paths. The system can realize ship-typhoon situation analysis, risk levee assessment, typhoon paths correction and course synoptic forecast, and intelligent typhoon evasion decision making.

  • PDF

Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.141-153
    • /
    • 2020
  • Probabilistic information regarding directional extreme wind speeds is important for the precise estimation of the design wind loads on structures. A joint probability distribution model of directional extreme typhoon wind speeds is established using Monte Carlo simulation and empirical copula function to fully consider the correlations of extreme typhoon wind speeds among the different directions. With this model, a procedure for estimating directional extreme wind speeds for given return periods, which ensures that the overall risk is distributed uniformly by direction, is established. Taking 5 typhoon-prone cities in China as examples, the directional extreme typhoon wind speeds for given return periods estimated by the present method are compared with those estimated by the method proposed by Cook and Miller (1999). Two types of directional factors are obtained based on Cook and Miller (1999) and the UK standard's drafting committee (Standard B, 1997), and the directional risks for the given overall risks are discussed. The influences of the extreme wind speed correlations in the different directions and the simulated typhoon wind speed sample sizes on the estimated extreme wind speeds for a given return period are also discussed.

Estimation of Typhoon-induced Extreme Wind Speeds over Coastal region of Gyeongsangnam-do Province (경상남도 해안 지역에서의 태풍에 의한 극한 풍속 추정)

  • Lee, Young-Kyu;Lee, Sung-Su;Kim, Hak-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.85-89
    • /
    • 2007
  • Data of the typhoon affecting Korean peninsula from 1951 to 2005 are obtained from the RSMC best track and six climatological characteristics of the typhoons are examined. Local wind speeds are obtained by the physical model for wind fields. Typhoons are generated by the Monte Carlo simulation and their wind speeds are distributed using Weibull CDF. Simulated typhoon wind speeds are used to obtain different wind speeds corresponding their mean recurrence intervals.

  • PDF

An Improved Monte-Carlo Simulation Method for Typhoon Risk Assessment in Korea (개선(改善)된 Monte-Carlo 시뮬레이션 방법(方法)에 의한 한국(韓國)의 태풍위험도(颱風危險度) 분석(分析))

  • Cho, Hyo Nam;Chang, Dong Il;Cha, Cheol Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.159-165
    • /
    • 1987
  • This study proposes an operational method of typhoon risk assessments in Korea, using Statistical analysis and probabilistic description of typhoon at a site. Two alternative simulation and fitting methods are discussed to predict the probabilistic typhoon wind speeds by indirect methods. A Commonly used indirect method is Russell's procedure, which generates about 1,000 Simulation data for typhoon winds, statistically evaluate the base-line distribution, and then fits the results to the Weibull distribution based on probabilistic description of climatological Characteristics and Wind field model of typhoon at a site. However, an alternative procedure proposed in this Paper simulates extreme typhoon wind data of about 150~200 years and directly fits the generated data to the Weibull distribution. The computational results show that the proposed simulation method is more economical and reasonable for typhoon risk-assessment based on the indirect method. And using the proposed indirect method, the probabilistic design wind speed for transmission towers in typhoon-prone region along the South-Western coast is investigated.

  • PDF

Generation of a Standard Typhoon using for Surge Simulation Consistent with Wind in Terms of Return Period (풍속 재현빈도와 일치하는 해일모의용 표준태풍 생성)

  • Kang, Ju Whan;Kim, Yang-Seon;Kwon, Soon-Duck;Choun, Young-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • Extreme wind speeds at four sites including Mokpo, Gunsan, Incheon and Jeju near the Western Coast have been estimated with a tool of Monte Carlo simulation and typhoon data. Results of sensitivity analysis show that closeness between distance to the eye and the radius to maximum wind is most sensitive. While location angle and pressure deficit are sensitive too, but translation velocity is not. A standard typhoon, which results in extreme wind speeds having various return period, can be constructed by combination of parameter informations of each site. Then, with a numerical modelling of the typhoon, extreme surge heights having the same return period can also be obtained. To be added, by analysing the data which only including those based on navigable semicircle, it is possible to produce a standard typhoon which could result in setting-down of sea level.

Fast Simulation of Wind Waves along the Korean Coast Induced by Typhoon Nabi, 2005 (태풍 나비에 의한 한국 연안 태풍파의 신속 모의)

  • Lee, Jung-Lyul;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.567-573
    • /
    • 2006
  • An efficient typhoon wave-generating model is applied to northeast Asia sea zone presented that can be used by civil defense agencies for real-time prediction and fast warnings on typhoon-generated wind wave and storm surge. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. The results simulated along the Korean coasts during Typhoon Nabi (2005) showed reasonable agreement with the recorded wind waves.

  • PDF

Investigation of Typhoon Wind Speed Records on Top of a Group of Buildings

  • Liu, Min;Hui, Yi;Li, Zhengnong;Yuan, Ding
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.313-324
    • /
    • 2019
  • This paper presents the analysis of wind speeds data measured on top of three neighboring high-rise buildings close to a beach in Xiamen city, China, during Typhoon "Usagi" 2013. Wind tunnel simulation was carried out to validate the field measurement results. Turbulence intensity, turbulence integral scale, power spectrum and cross correlation of recorded wind speed were studied in details. The low frequency trend component of the typhoon speed was also discussed. The field measurement results show turbulence intensity has strong dependence to the wind speed, upwind terrain and even the relative location to the Typhoon center. The low frequency fluctuation could severely affect the characteristics of wind. Cross correlation of the measured wind speeds on different buildings also showed some dependence on the upwind terrain roughness. After typhoon made landfall, the spatial correlation of wind speeds became weak with the coherence attenuating quickly in frequency domain.