• Title/Summary/Keyword: Typhoon Olga

Search Result 7, Processing Time 0.02 seconds

Case Study on the State of Sea Surface with Low Atmospheric Pressure and Typhoon Conditions over the fellow Sea (저기압 및 태풍 통과시 서해상의 해상상태 사례 분석)

  • Pang, Ig-Chan;Lee, Ho-Man;Kim, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.277-288
    • /
    • 2004
  • In this study, state of sea surface were analyzed comparatively for cases of low atmospheric pressure, which occurred in the middle area of China and moved eastward to the Korean Peninsula across the Yellow sea during April 9-12, 1999, and typhoons 'NEIL' May 1999 and 'OLGA' July 1999, which moved northward along the west coast of the Korean Peninsula. In cases of low pressure, wind speeds and phases were respectively stronger and faster in the center area than in the surrounding areas. The wave heights seem to a somewhat differing tendency from that of the wind speeds due to the influences of geometry. On the other hand, wave heights were lower under typhoon weather than under low pressures, except the instance of wave height over 5 m on Chilbal when typhoon Olga pass northward from the southern area. Storm surges also showed larger amplitudes under low pressures than under typhoons. The results suggest that wave sand storm surges may be larger for a slow passing synoptic low pressures than for a fast passing local typhoon.

The Strain of Pipe Framed Greenhouse by Typhoon (태풍에 의한 파이프 골조 온실의 변형도)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.99-106
    • /
    • 2002
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the various strains in structural materials. These results can eventually be utilized in the design criteria as well as in the modification of conventional equation for calculating more realistic wind loads. The first data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999 were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation of strain depending on wind pattern could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by way of adopting more efficient instrument with sufficient number of measuring points and accuracy.

A Height Simulation on Storm Surges in Jeju Island (제주도 연안해역의 폭풍해일고 산정)

  • Yang, Sung-Kee;Kim, Sang-Bong
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.459-472
    • /
    • 2014
  • Storm surge height in the coastal area of Jeju Island was examined using the Princeton Ocean Model(POM) with a sigma coordinate system. Amongst the typhoons that had affected to Jeju Island for six years(1987 to 2003), the eight typhoons(Maemi, Rusa, Prapiroon, Olga, Yanni, Janis, Gladys and Thelma) were found to bring relatively huge damage. The storm surge height of these typhoons simulated in Jeju harbour and Seogwipo harbour corresponded relatively well with the observed value. The occurrence time of the storm surge height was different, but mostly, it was a little later than the observed time. Jeju harbour showed a higher storm surge height than Seogwipo harbour, and the storm surge height didn't exceed 1m in both of Jeju harbour and Seogwipo harbour. Maemi out of the eight typhoons showed the maximum storm surge height(77.97 cm) in Jeju harbour, and Janis showed the lowest storm surge height(5.3 cm) in Seogwipo harbour.

A Study on the Strain of Greenhouse Frame by Typhoon (태풍에 의한 온실구조재의 변형도 고찰)

  • 이수근;윤용철;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.439-446
    • /
    • 1999
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the vairous strains instructural materials. These results can eventually be utilized in the desgin criteria as well as in the modification of conventional equaltion for calcu more realistic wind loads. Tehfirst data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999. Were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation ofstrain depending on wind patter could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by wasy of adopting more efficientg instrument with sufficient number of measuring points and accuracy.

  • PDF

Typhoon-Surge Characteristics and the Highest High Water Levels at the Western Coast (서해안의 태풍해일특성과 고극조위)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.50-61
    • /
    • 2019
  • The aspects of typhoon-induced surges were classified into three types at the Western coast, and their characteristics were examined. The typhoons OLGA (9907) and KOMPASU (1007) were the representative steep types. As they pass close to the coasts with fast translation velocity, the time of maximum surge is unrelated to tidal phase. However, typhoons PRAPIROON (0012) and BOLAVEN (1215) were the representative mild types, which pass at a long distance to the coasts with slow translation velocity, and were characterized by having maximum surge time is near low tide. Meanwhile, typhoons MUIFA (1109) and WINNIE (9713) can be classified into mild types, but they do not show the characteristics of the mild type. Thus they are classified into propagative type, which are propagated from the outside. Analyzing the annual highest high water level data, the highest water level ever had been recorded when the WINNIE (9713) had attacked. At that time, severe astronomical tide condition overlapped modest surge. Therefore, if severe astronomical tide encounter severe surge in the future, tremendous water level may be formed with very small probability. However, considering that most of the huge typhoons are mild type, time of maximum surge tends to occur at low tide. In case of estimating the extreme water level by a numerical simulation, it is necessary not only to apply various tide conditions and accompanying tide-modulated surge, but also to scrutinize typhoon parameters such as translation velocity and so on.

The Preliminary Analyses on Damage Types of Stone Hertage induced by Natural Hazard, Korea (석조문화재의 자연재해 피해양상 예비분석)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Kim, Jin-Kwan;Lee, Jin-Young;Kim, Min-Seok;Yi, Sang-Heon;Kim, Jeong-Chan;Nahm, Wook-Hyun;Yang, Yun-Sik
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • The severe damage of cultural heritages induced by natural hazards like heavy rain has been dramatically increased since 1990. The number of the repair works of stone heritage of 2005 was six times as many as those of 1986 year. Especially the ratio of the repair works of Gyeongsang Province and Jeolla Province stood 63% of those of all over the country. Since 1990, the typhoons usually struck the southern part of Korea and went northward. The heavy damage of stone heritages in two provinces was caused by them. We made a preliminary survey the stone heritages that exposed to the natural hazards on the basis of repair works of them and a field survey. The analysis results indicate that the natural hazards such as landslide and soil disaster of the stone heritages related to a sloping surface stood 58% of all kind of natural hazards. The reasons are caused by the 59 % of all the stone heritages distributed in a sloping surface resulted in natural hazards like landslide and soil disaster. The bases of stone heritages can be easily eroded by the surface water with high energy induced by heavy rainfall. Most of the stone heritages like Maebul were engraved on a natural rock wall(outcrop). But some of them engraved on rolling stones are very vulnerable in a change of a base condition caused by erosion and ground subsidence and they can be tilted or fell down. The distribution of the stone heritages vulnerable in natural hazard is related to that of the rainfall distribution compounded five typhoons after 1990. Most of them are included in level two on the rainfall distribution map except those of Taean peninsula and some of Gyeonggi Province. They seem to be rather related to the rainfall distribution of the Typhoon Olga.

  • PDF