• Title/Summary/Keyword: Typha angustifolia L.

Search Result 8, Processing Time 0.02 seconds

Taxonomic examination of Typha angustifolia L. in Korea (한국산 애기부들에 대한 분류학적 검토)

  • Kim, Changkyun;Shin, Hyunchur;Choi, Hong-Keun
    • Korean Journal of Plant Taxonomy
    • /
    • v.31 no.4
    • /
    • pp.359-373
    • /
    • 2001
  • One of Korean Typha species has been used two scientific names, T. angustifolia L. and T. angustata Bory et Chaubard without taxonomic examinations. Typha angustifolia has a longer females flowers than bracteoles and equal length of bracteoles and hairs in female flowers whereas T. angustata has equal length of female flowers and bracteoles and longer bracteloes than hairs in female flowers. In this study, the pattern of morphological variation of T. angustifolia in Korea is examined using numerical analysis to determine their taxonomical identities. Univariate analysis using morphological characters such as female flower length/bracteole length and bracteole lengh/hair length reveals that Korean T. angustifolia is composed of one group. The result of principal components analysis shows that Korean T. angustifolia is closely related to T. angustifolia distributed in Japan, Russia, and USA. Therefore, T. angustifolia L. (in Korea) is suggested as a legitimate scientific name.

  • PDF

Construction of a full-length cDNA library from Typha laxmanni Lepech. and T. angustifolia L. from an EST dataset

  • Im, Subin;Kim, Ho-Il;Kim, Dasom;Oh, Sang Heon;Kim, Yoon-Young;Ku, Ja Hyeong;Lim, Yong Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.583-590
    • /
    • 2018
  • Genus Typha L. (Typhaceae; Cattail in common) is one of the hydrophytic plants found in semi-aquatic regions. About nine to 18 species of the genus exist all over the world. In Korea, the most commonly found cattail species are T. laxmanni and T. angustifolia. The aim of this study was to prepare a cDNA library and sequences and analyze expressed sequence tags (ESTs) from these species, T. laxmanni and T. angustifolia. In the case of T. laxmanni, we observed that 715 out of 742 ESTs had high quality sequences, whereas the remaining 27 ESTs were low quality sequences. In this study, we identified 77 contigs, 393 unassembled clones and 65.7% singletons. Furthermore, in the case of T. angustifolia, we recorded 992 high quality EST sequences, and by excluding 28 low quality sequences from among them, we retrieved 120 contigs, 348 unassembled clones and 48.9% singletons. The basic local alignment search tool (BLAST) and Kyoto encyclopedia of genes and genomes (KEGG) database results enabled us to identify the functional categories, i.e., molecular function (16.5%), biological process (22.2%) and cellular components (61.3%). In addition, between these two species, the no hits and anonymous genes were 4.2% and 11.7% and 6.2% and 11.2% in T. laxmanni and T. angustifolia, respectively, based on the BLAST results. The study concluded that they have certain species-specific genes. Hence, the results of this study on these two species could be a valuable resource for further studies.

Salt Tolerance of Various Native Plants under Salt Stress (여러 자생식물의 내염성 정도 구명)

  • Shim, Myung Syun;Kim, Young Jae;Lee, Chung Hee;Shin, Chang Ho
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.478-484
    • /
    • 2012
  • This study was carried out to investigate the plant growth and ion absorbance balance of various native plants affected by the NaCl concentration (0, 100, 200, 300 mM). Carex blepharicarpa, Carex lenta, Carex matsumarae, Carex sendaica, Iris pseudacorus L., Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L. were used in this experiment. Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant of salinity at the NaCl concentration of 200 mM. The root growth of Carex sendaica and Typha angustifolia L. was suppressed at the NaCl concentration of 100 mM, expecially the root growth responded more sensitively than the upper growth to salinity. The K absorbance of Carex sendaica decreased according to the NaCl application, and the Na/K rate value was 3 at the NaCl concentration of 300 mM. The K, Ca, and Mg absorbance of Typha angustifolia L. decreased at the NaCl concentration of 200~300 mM, and the Na/K rate value was 0.8 at the NaCl concentration of 300 mM. The plant growth of Sedum oryzifolium Makino and Sedum polytrichoides Hemsl. was suppressed at the NaCl concentration of 100~200 mM. The K, Ca, and Mg absorbance of Sedum oryzifolium Makino decreased at the NaCl concentration of 200~300 mM, and Sedum polytrichoides Hemsl. was unaffected by the NaCl application. The Na/K value was 1 in both plants. Therefore, Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant plants of salinity at the NaCl concentration of 200 mM considering the plant growth and ion absorbance balance. Especially, the Carex plants were expected to expanding use by the proven tolerance of salinity. The root growth of Carex sendaica, Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L., was suppressed at the NaCl concentration of 100 mM, but there was no distinct tendency of ion absorbance in leaves according to the NaCl application.

Shoot Cutting Effects on the Productivity and Nutrient Removal of Some Wetland Plants (습지식물의 지상부 제거가 생산력과 영양염류 제거량에 미치는 효과)

  • 정연숙;오현경;노찬호;황길순
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.459-465
    • /
    • 1999
  • This work focused on the effects of the timing and the frequency of shoot cutting to maximize the productivity and the nutrient removal of three emergent macrophytes, Phragmites communis, Zizania latifolia and Typha angustifolia in natural wetlands. Shoot cutting significantly enhanced biomass production and resulted in more nitrogen and phosphorus removal from water in these three experimental species, compared to those of control. However, the frequency and the timing of shoot cutting, and the enhancement ratio were different among three species. For Phragmites stands, the highest productivity was 1.9 times of control in June treatment of the first year experiment, while 1.3 times in May treatment of the second year experiment. Zizania and Typha stands were both 1.2 times of control in August treatment and June and August treatment. Calculating the total annual removal rate of nitrogen and phosphorus based on the highest productivities among treatments, in Phragmites stands, 2.0 times of nitrogen and 1.8 times of phosphorus were removed in the first year, and both 1.4 times in the second year experiment. Likewise, for nitrogen and phosphorus; 2.4 and L.8 times in Zizania stands, and 1.8 and 1.9 times in Typha stands were removed. Overall, these results suggested that cutting treatment of shoots be effective. Thus, shoot cutting of two times during a growing season were recommended to maximize the effects: that is, in May or June, and October for Phragmites stands, and in August and October fur Zizania and Typha stands.

  • PDF

Comparison of Nitrogen Removal Between Reed and Cattail Wetland Cells in a Treatment Pond System (갈대 및 부들 습지셀의 연못시스템 방류수 질소제거 비교)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.234-239
    • /
    • 2004
  • [ $NO_3$ ]-N and T-N removal rates of cattail wetland cells were compared with those of reed wetland cells. The examined cells were a part of a pond-wetland system composed of two ponds in series and six wetland cells in parallel. Each wetland cell was 25m in length and 6m in width. Cattails (Typha angustifolia) were transplanted into three cells and reeds Phragmites australis) into another three ones in June 2000. Water of Sinyang stream flowing into Kohung Estuarine lake located in the southern part of the Korean Peninsula was pumped into the primary pond, its effluent was discharged into the secondary pond Effluent from the secondary pond was funneled into each cell. Two cattail and reed cells were chosen for this research. Water quantity and quality of influnt and effluent were analyzed front May 2001 through October 2001. The volume of influent and effluent of the cells averaged about $20.0\;m^3/day$ and $19.3\;m^3/day$, respectively. Hydraulic retention time was approximately 1.5 days. Influent $NO_3$-N concentration for the four cells averaged 2.39 mg/L. Effluent $NO_3$-N concentration far the cattail and reed cells averaged 1.74 and 1.78 mg/L, respectively. Average $NO_3$-N retention rate for the cattail and reed cells by mass was 30 and 29%, respectively. Influent T-N concentration far the four cells averaged 4.13 mg/L. Effluent T-N concentration for the cattail and reed cells averaged 2.55 and 2.61 mgL respectively. Average T-N retention rate for the cattail and reed cells by mass was 39 and 38%, respectively. $NO_3$-N and T-N concentrations in effluent from the cattail cells were significantly low (p=0.04), compared with those from the reed cells. Cattail wetland cells were more efficient for $NO_3$-N and T-N abatement than reed ones.

Total Phosphorus Removal in Cattail Wetland Purifying Effluent from a Night Soil Treatment Plant during Its Initial Operation (분뇨처리장 방류수를 정화하는 부들습지의 초기운영 단계에서 총인의 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • Total phosphorus(TP) removal was examined in a surface-flow wetland constructed in April 2003 during its initial operating stage from June to November 2003. Its dimensions were 87mL by 14mW. It was a part of a four-wetland-cell treatment system constructed near the Kohung Estuarine Lake located in the southern part of Korea. Effluent from a night soil treatment plant was discharged into the wetland and purified effluent from the wetland was discharged into Sinyang Stream flowing into the Lake. Cattails(Typha angustifolia ) from natural wetlands were cut at about 40 cm height and transplanted into the wetland. An average of 25.0$m^3$/day of effluent flowed from the plant into the wetland. Water depth was maintained about 0.2m and hydraulic detention time was about 5.2 days. Average heights of the cattail stems in June and October 2003 were 47.2 and 164.6cm, respectively. The average number of stems was 10.2 stems/$m^2$ in June 2003 and 18.8 stems/$m^2$ in October 2003. Average temperature of influent and effluent ranged 23.4 and $24.2^{\circ}C$, respectively. The average TP concentrations of influent and effluent were about 1.31, 0.50mg/L, respectively. TP loading rate of influent into the wetland averaged 26.81mg/$m^2$, day and average TP loading rate of effluent was 10.04mg/$m^2$, day. Monthly average TP removal by the wetland during the warm growing season of cattails(June to September) ranged 16.28~19.57mg/$m^2$, day and during the cold senescent period (October to November) ranged 12.62~13.90mg/$m^2$, day. TP removal in the wetland continued during the cold winter months and was primarily done by sedimentation and precipitation of phosphorus rather than phosphorus absorption by cattails and microorganisms.

Distribution of Biota and Removal Efficiency of Organic Matter in Natural Wetland (농촌배수처리용 습지의 생물상 및 유기물 제거율)

  • Kim, Bum-Chul;Jeon, Man-Sik;Jung, Geun;Jung, Yeon-Sook;Hwang, Gil-Soon
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.407-414
    • /
    • 1999
  • Distribution of biota and removal efficiency of organic matter in natural wetland systems were examined from June to October 1998. The aquatic macrophyte communities were consisted of 13 families and 22 species. The composition of occurrence species were as follows: Phragmites communis Trinius are 35%, Persicaria thunbergii Nakai are 19%, Typha angustifolia L. are 17%, Bidens tripartita L. are 16%, Echinochloa crus-galli (L.) Beauv. are 12% and others are l%. The fauna collected from 5 sites consisted of total 6 classes of macroinvertebrates. The composition of occurrence classes were as follows: Insecta are 76%, O1igochaeta are 19%, Gastrapoda are 4% and others are 1%. These included 18 families, 7 orders of Insects. The larve and mosquito and midges were found in wetlands. Preventive strategies are needed for the suppression of mosquito at the stage of wetland planning and design. In wetland, removal efficiency of dissolved organic carbon is low because of primary production and the background level of DOC in the wetland discharge seems to be 5 mgC/1, but those of BOD was ca. 50%. Wetlands receiving water of low concentration can not work as purification field.

  • PDF

Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System (인공습지시스템에서 수리학적 조건과 수질정화특성)

  • Park, Byeng-Hyen;Kim, Jae-Ok;Lee, Kwng-Sik;Joo, Gea-Jae;Lee, Sang-Joon;Nam, Gui-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.285-294
    • /
    • 2002
  • The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.