• 제목/요약/키워드: Type-1 Fuzzy Logic Controller

검색결과 27건 처리시간 0.03초

Rule 선택 기법을 사용한 Type-1 Fuzzy Logic Controller의 연산 효율성 향상 (Enhancement of Computational Efficiency for Type-1 Fuzzy Logic Controller Using Rule Selection Method)

  • 조정우;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1879_1880
    • /
    • 2009
  • 본 논문에서는 제어상황에 따라 Type-1 Fuzzy Logic Controller가 선택적으로 rule을 사용하도록 rule 선택 알고리즘을 제안 한다. 그리고 이를 통해 연산 효율성을 높이는 방법에 관해 논한다. Type-1 Fuzzy Logic Controller는 기존의 제어기에 비해 설계하기 쉽고 성능이 더 뛰어나다. 그러나 제어 변수가 많아질수록 rule의 개수가 늘어나 연산량이 증가하게 된다. 연산량이 많아지면 고성능의 컴퓨터에서는 실시간 연산에 문제가 없으나 산업용 micro controller에서는 실시간 연산을 구현하는데 한계가 발생한다. 본 논문에서는 Type-1 Fuzzy Logic System의 논리구조에 근거하여 Type-1 Fuzzy Logic Controller의 연산량을 감소시킬 수 있는 알고리즘을 제안한다. 제안한 알고리즘은 제어상황에 따라 필요한 rule들만 선택적으로 제어값 도출을 위한 연산에 관여하도록 한다. Matlab 시뮬레이션을 통해 제안한 알고리즘의 유용성과 연산량을 실험하였다. 실험대상은 2륜 이동로봇으로 하였고 step 응답과 전/후진 시 결과를 관찰하였다. 실험 결과 제안한 알고리즘이 기존의 Type-1 Fuzzy Logic Controller에 비해 제어상황에 따라 필요한 rule들만 선택적으로 사용하는 것을 확인하였다. 결과적으로 연산 효율성이 향상되었다.

  • PDF

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

The Study of Gain Scheduled PD-like Fuzzy Logic Control : Application to High Maneuverable Aircraft

  • Hong, Sung-Kyung;Lee, Jung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.141.1-141
    • /
    • 2001
  • This paper describes an approach for synthesizing a modularized gain scheduled PD type fuzzy logic controller(FLC) for a high maneuverable aircraft system, where the gains of FLC are on-line adapted according to the flight condition. Specially, the systematic procedure via root locus technique is carried out for the sellection of the gains of FLC. Simulation results demonstrate that the proposed gain scheduled fuzzy logic controller yields better control performance than the normal (without gain scheduling) fuzzy controller.

  • PDF

최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로 (The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms)

  • 김욱동;장한종;오성권
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

뉴로-퍼지 제어기 설계 연구 (A Study on a Neuro-Fuzzy Controller Design)

  • 임정홈;정태진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

새로운 Fuzzy Logic을 이용한 선박조타계의 제어 (Design of Ship's Steering System by Introducting the Improved Fuzzy Logic)

  • 이철영;채양범
    • 한국항해학회지
    • /
    • 제8권1호
    • /
    • pp.15-42
    • /
    • 1984
  • Many studies have been done in the field of fuzzy logic theory, but it's application to the ship's steering system is few until this date. This paper is to survey the effect of application of fuzzy logic control by new compositional rule of Inference to the ship's steering system. The controller is made up of a set of Linguistic Control Rules which are conditional linguistic statements connecting the inputs and output, and take the inputs derived from deviation angle and it's angular velocity. The Linguistic Control Rules are implemented on the digital computer to verify the performance of the fuzzy logic controller and simulations have been done in six cases of initial condition and disturbance type. Consequently, it was proved that the ship's steering system by introducing the F.L.C. is performed efficiently and less energy loss system compared with the conventional autopilot.

  • PDF

Self-Tuning Fuzzy Logic Controller for a Dual Star Induction Machine

  • Merabet, Elkheir;Amimeur, Hocine;Hamoudi, Farid;Abdessemed, Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.133-138
    • /
    • 2011
  • This paper proposes a simple but robust self-tuning fuzzy logic controller for the speed regulation of a dual star induction machine based on indirect field oriented control. For feed the two star of this machine, two voltage source inverters based on sinus-triangular pulse-width modulation techniques are introduced. The simulation results show the robustness and good performance of the proposed controller.

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.