• Title/Summary/Keyword: Type of runway

Search Result 13, Processing Time 0.028 seconds

The study on the improvement of measuring longitudinal roughness index for airport runway using a laser profilometer (레이저 평탄성장비를 사용한 공항활주로 종단 평탄성지수 측정개선에 관한 연구(I))

  • 박기순;손형호;전현욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.755-760
    • /
    • 1998
  • This study was performed to improve the evaluation of the longitudinal roughness index for various profilometers at airport runway. Especially, a laser type of profilemeter subjected to the longitudinal roughness index has been focused. The test result show that a new type of profile index, IRI(International roughness index) resulted from a laser type of profilometer was profitable for airport runway etc.. The present study provides useful results for the improvement of evaluation of the conventional profile index.

  • PDF

A Study on the Allowances of Aircraft Landing Distance (항공기 착륙거리의 여유분 산정에 관한 연구)

  • Noh, Kun-Soo;Kim, Woong-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • Among the phases of flight operations pilots feel much pressure in landing segment. There is a number of factors affecting landing safety while pilots reduce aircraft speeds and make a touchdown and stop completely. If runway length is sufficient for landing, there maybe is no problem. But it is not the case all the time. So it is necessary to confirm whether landing performance is within limits or not. Required landing distance is actual landing distance demonstrated by flight test pilot plus allowances for average airline pilots. FAR(Federal Aviation Regulations) AFM certification is based upon manual landing for dry and wet runway. Other runway conditions are not the certification basis. JAR dictates even contaminated/slippery runway is included by prescribed allowances. Automatic landing is not certification basis, so actual landing distances are provided. In this paper I would like to analyze distance allowances included in each type of runway condition. In addition there is no regulation about allowances for specific runway condition, I would suggest adequate allowances for that case.

An Application of the Improved Models for Risk Assessment of Runway Safety Areas (활주로안전구역 위험평가 개선모델 적용 연구)

  • Kim, Do-Hyun;Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • The RSA is intended to prevent the following five types of events from becoming an accident: landing overruns, landing undershoots, landing veer-offs, takeoff overruns and takeoff veer-offs. The improved models are based on evidence from worldwide accidents and incidents that occurred during the past 27 years. The analysis utilizes historical data from the specific airport and allows the user to take into consideration specific operational conditions to which movements are subject, as well as the actual or planned RSA conditions in terms of dimensions, configuration, type of terrain, and boundaries defined by existing obstacles. This paper shows how to apply the improved models for Risk Assessment of Runway Safety Areas (Airport cooperative research program(ACRP) Report 50) into an airport and the outcome differences between the old models based on ACRP report 3-Analysis of aircraft overrun and undershoots for runway safety areas and the new models from ACRP report 50 in the specific airport.

Monte Carlo Simulation of MR Damper Landing Gear Taxiing Mode under Nonstationary Random Excitation

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • When an aircraft is taxiing, excitation force is applied according to the shape of the road surface. The sprung mass acceleration caused by the excitation of the road surface negatively affects the feeling of boarding. This paper addresses the verification process of the semi-active control method applied to improve the feeling of boarding. The Magneto-Rheological damper landing gear model is employed alongside the control method. It is a Oleo-Pneumatic damper filled with a fluid having the characteristics of increasing yield stress when subjected to a magnetic field. The control method involves verifying Skyhook Control Type2 developed by Skyhook control. The Sinozuka white noise model that considers runway characteristics was employed for the road surface in the simulation. The runway road surface obtained through this model has stochastic characteristics, so the dynamic characteristics were analyzed by applying Monte-Carlo simulation. A dynamic analysis was conducted by co-simulating the landing gear model made by RecurDyn and the control method designed by Simulink. Simulation results show that the Skyhook Control Type2 method has the best control effect in the low speed range compared to the passive type (without control) and skyhook control.

A Study for Efficient Foreign Object Debris Detection on Runways (활주로 FOD 탐지 효율화를 위한 기술적 고찰)

  • Lee, Kwang-Byeng;Lee, Jonggil;Kim, Donghoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.130-135
    • /
    • 2014
  • FOD(Foreign Object Debris) has the potential threat to damage aircraft during critical phases of take-off and landing roll with some objects including metal on the runway. FOD can be found anywhere on an airport's air operation areas such as runway, taxiway and apron. It can lead to catastrophic loss of life and airframe, and increased maintenance and operating costs. In this paper, we defined FOD and surveyed its riskiness and necessity of automatic FOD detection system. We compared the requirements of the environment in Korea to the FAA advisory circular. Also we analyzed operation methods of FOD detection systems already installed at some airports. Based on the surveys mentioned above, we propose hybrid type of FOD detection system considering the environment in Korea which uses millimeter wave radar, optical camera and thermal imaging camera to detect FOD efficiently. In management approach, fixed type of the system should be installed for real-time monitoring, and mobile type of the system can be used additionally.

A Study on the Air Traffic Control Rule and Optimal Capacity of Air Base (항공교통관제규칙과 비행장의 최적규모에 관한 연구)

  • Lee Ki-Hyun
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.177-184
    • /
    • 1976
  • As the organizational size of a military service or business increases and its management becomes complex, the success in its management depends less on static type of management but more on careful, dynamic type of management. In this thesis, an operations research technique is applied to the problems of determining optimal air traffic control rule and of optimal capacity of air base for a military air base. An airport runway is regarded as the service facility in a queueing mechanism, used by landing, low approach, and departing aircraft. The usual order of service gives priority different classes of aircraft such as landings, departures, and low approaches; here service disciplines are considered assigning priorities to different classes of aricraft grouped according to required runway time. Several such priority rules are compared by means of a steady-state queueing model with non-preemptive priorities. From the survey conducted for the thesis development, it was found that the flight pattern such as departure, law approach, and landing within a control zone, follows a Poisson distribution and the service time follows an Erlang distribution. In the problem of choosing the optimal air traffic control rule, the control rule of giving service priority to the aircraft with a minimum average waiting cost, regardless of flight patterns, was found to be the optimal one. Through a simulation with data collected at K-O O Air Base, the optimal take-off interval and the optimal capacity of aircraft to be employed were determined.

  • PDF

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.

Initial Sizing of a Tilt Ducted Fan Type eVTOL for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 틸트 덕티드 팬 형 eVTOL의 초기 사이징)

  • Lee, Sang Gon;Ko, Bo Sung;Ahn, Seong Ho;Hwang, Ho Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.52-65
    • /
    • 2021
  • A large amount of time and cost is consumed due to congestions caused by an increasing number of cars which results in a lot of emissions. To overcome these problems, a new electric vertical takeoff and landing (eVTOL) aircraft is being considered. Since vertical take off and landing without a separate runway is realized and electricity is used as a power source, it could solve the saturated ground traffic congestions without emissions. In this paper, the initial sizing was performed based on the Nexus 6HX of Belltextron which is a tilt-ducted fan type. In this study, the electric propulsion system that only uses battery was implemented instead of current Nexus 6HX hybrid electric propulsion. Aerodynamic analyses were performed using OpenVSP and XFLR5. Power-to-weight ratio, wing loading, estimated weight were calculated with these analyses.

Development of a Junction between Airport Concrete and Asphalt Pavements (공항 콘크리트와 아스팔트 포장 간의 접속 방법 개발)

  • Park, Hae Won;Kim, Dong Hyuk;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving. METHODS : The actual pavement junction of a domestic airport, which is called airport "A" was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport "A" and a modified section of junction from airport "A". The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction. RESULTS : A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport "A" under the same level of pushing. On the other hand, for the modified section from airport "A" a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section. CONCLUSIONS : It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.

Comparison with Load Transfer Efficiency for Joint Types in Airport Concrete Pavements (줄눈형식에 따른 공항 콘크리트 포장 하중전달율 비교)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn;Kim, Min-Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.9-20
    • /
    • 2014
  • PURPOSES : This study is to compare load transfer efficiency of key joint and dowel joint for airport concrete pavement. METHODS : As AC150/5320-6D of FAA's [Advisory Circular] was changed into AC150/5320-6E, Key joint type of rigid pavement were excluded from Construction Joints. LTE(Load Transfer Efficiency) of dowel joint and key joint were compared by times and seasons through pavement temperature measurement, ocular investigation and HWD measurement. RESULTS : For the joint performance grade of No. 2(The second) runway of airport, 12% of poor rate was observed in key joint and 2% of poor rate in dowel joint. Poor rate of key joint was increased to 17%, if only No. 3~No. 6 slabs, which are mostly loaded from the airplanes, were applied for the study. In apron area, LTE poor rate of key joint was high in winter, and LTE poor rate of dowel joint was at least above 'Fair' grade. In summer, 'Fair' for key joint, 'Acceptable' for dowel joint appeared. CONCLUSIONS : As results, dowel joint was superior than key joint for LTE. Deviations of seasons and times were smaller in dowel joint's result. And LTE in winter was lower than LTE in summer.