• 제목/요약/키워드: Type II topoisomerase

검색결과 10건 처리시간 0.025초

HL-60 세포의 유전자 발현 및 topoisomerase의 기능 활성에 미치는 억제제의 영향 (Effects of Inhibitors on the Function and Activity of Topoisomerase, and Gene Expression in HL-60 Human Leukemia Cells)

  • 정인철;조무연;박장수
    • 생명과학회지
    • /
    • 제18권1호
    • /
    • pp.75-83
    • /
    • 2008
  • 인체 DNA topoisomerase는 DNA를 단일 또는 두 가닥을 일시적인 절단을 촉매하여 DNA의 topological 문제를 조절함으로써, DNA 복제, 전사, 재조합과 유사분열 과정 등에 관여한다. 이 효소는 많은 항생, 항암제의 표적효소로서 널리 알려져 있으며, 이들 유도체를 이용한 다양한 억제제의 개발과 임상적 응용에 관한 연구가 활발하게 진행되고 있다. 본 실험에서는 인체 백혈병 HL-60 세포에서 topoisomerase 억제제가 topoisomerase 기능 활성과 유전자 발현을 조절하는지를 규명하기 위하여 본 연구를 수행하였다. 연구 방법은 HL-60세포에 topoisomerase type I과 type II의 대표적 억제제인 10-hydroxycamptothecin (10-CPT)과 doxorubicin을 투여한 후 total RNA를 분리하였고, 10K-oligo-nucleotide microarray 방법으로 분석하여 유전자의 발현 양상을 조사하였다. 연구 결과에 의하면 10-CPT 또는 doxorubicin을 투여한 HL-60세포에서의 유전자 발현 양상은 주로 signal transduction, cell adhesion, cell cycle, cell growth, cell proliferation, cell differentiation, transcription 및 immune response 등과 관련이 있었다. Topoisomerase type I의 억제제인 10-CPT를 HL-60 세포주에 투여 하였을 때 type I으로 분류되는 topoisomerase III${\alpha}$, III${\beta}$ 및 I의 발현은 증가하였으나 type II인 topoisomerase II${\alpha}$와 II${\beta}$의 유전자의 발현은 감소되었다. 반대로 type II의 억제제인 doxorubicin을 투여하였을 때는 앞의 결과와 상반된 topoisomerase II${\alpha}$와 II${\beta}$의 유전자의 발현이 현저히 증가되었으며, topoisomerase III${\alpha}$와 III${\beta}$의 mRNA의 발현은 약간 감소하는 양상을 보였으나 의미 있는 차이는 없었다. 이 연구 결과는 앞으로 항암제의 기전을 밝히고 약물에 대한 치료 반응을 예측하고 새로운 약제 개발에 기초자료가 될 것으로 여겨진다.

재생 쥐간에서 분리한 DNA topoisomerase II에 결합된 protein kinase 활성 (The Identification of Type II DNA Topoisomerase-Associated Protein Kinase Activity from Regenerating Rat Liver)

  • 이치건;박세호;남궁록;김찬길;박상대
    • 한국동물학회지
    • /
    • 제36권3호
    • /
    • pp.367-372
    • /
    • 1993
  • 재생쥐간에서 분리한 topoisomerase II에서 protein kinase 활성이 발견되었다. ,topo II 활성 및 kinase 활성은 hydroxyapatite, phosphocellulose, double strand DNA cellulose chromatography 등의 순수 분리 과정 중에도 서로 분리되지 않았으며 glycerol gradient sedimentation 분석에서도 같은 분획에서 활성이 존재하였다. Kinase는 topo II 저해제인 N-ethylmaleimide와 novobiocin 등에 의해 그 활성이 저해되었다. 그러나 이러한 증거들 만으로 kinase 활성이 topo II가 아닌 다른 polypeptide에 의한 것일 가능성을 완전히 배제 할 수는 없다. Topo II와 결합된 kinase 활성에는 Mg++가 절대적으로 필요하였으며 다른 일가 또는 이가 이온으로는 그 효과가 대체되지 않았다. Histone H1은 kinase 활성을 증가 시키며 또 kinase에 의해 강하게 인산화된다. 이러한 효과는 다른 histone 류 및 casein 등에 의해 대체되지 않았다.

  • PDF

Anticancer Activity of Indeno[1,2-b]-Pyridinol Derivative as a New DNA Minor Groove Binding Catalytic Inhibitor of Topoisomerase IIα

  • Jeon, Kyung-Hwa;Shrestha, Aarajana;Jang, Hae Jin;Kim, Jeong-Ahn;Sheen, Naeun;Seo, Minjung;Lee, Eung-Seok;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.562-570
    • /
    • 2021
  • Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.

말불버섯 추출물의 Topoisomerase 저해 효과 (Inhibition of Topoisomerase-mediated DNA Cleavage by Lycoperdon perlatum)

  • 박미정;조강진;김정봉;김동헌;김양섭;석순자;김선여;황영수
    • 한국식품과학회지
    • /
    • 제29권5호
    • /
    • pp.1057-1062
    • /
    • 1997
  • 26속 32종의 버섯의 topoisomerase II 작용 억제여부를 검색한 결과 말불버섯이 topoisomerase II 작용을 억제하며 그 유효 성분이 핵산분획물에 존재함을 확인하였다. 말불버섯의 핵산분획물은 linear DNA와 open circular DNA를 생성시켰으며 농도와 반응시간에 의존적인 반응 양상을 나타냈다. 또한 말불버섯의 핵산분획물은 topoisomerase I의 작용도 억제하였다. 그러나 배양한 말불버섯의 균사체는 topoisomerase 작용에 아무런 영향을 미치지 않았다.

  • PDF

TopoisomeraseII and Topoisomerase IV Gene Mutations Fluoroquinolone Resistance of Pseudomonas aeruginosa

  • Kim Yuntae;Baik Heongseok
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.507-514
    • /
    • 2004
  • The Pseudomonas aeruginosa isolated from the clinical specimens has a mutation on the QRDR (quinolone resistance determining region). There were obvious mutations in both gyrA and parC gene which are major targets of quinolone. Simultaneous mutations were found two sites or more on these genes in all of ten strains. GyrB or parE gene had only silent mutation without converted amino acids. We confirmed that P. aeruginosa from clinical specimens exhibited decreased sensitivity to fluroquiolone due to changed Thr-83→lle and Asp-87→Asn types on gyrA and altered Ser-87→Leu type on parC. This is the first finding that a new Met-93→Thr type on parC as well as mutations on gyrB or parE genes differed from existing patterns. This study showed more mutations of gyrA rather than parC, suggesting that change of Type Ⅳ topoisomerase is more serious than that of type Ⅱ (DNA gyrase).

  • PDF

Streptococcus parauberis의 퀴놀론 내성 증가와 Topoisomerase 유전자에서의 돌연변이 신속 분석 (Increased Resistance to Quinolones in Streptococcus parauberis and Development of a Rapid Assay for Detecting Mutations in Topoisomerase Genes)

  • 김소연;김영철;정서경;전려진;진지웅;정현도
    • 한국수산과학회지
    • /
    • 제47권3호
    • /
    • pp.247-254
    • /
    • 2014
  • To investigate the acquisition of quinolone resistance, we examined mutations in the quinolone resistance-determining region (QRDR) of type II topoisomerase genes in ciprofloxacin (CIP)-resistant clinical isolates and in vitro mutants of Streptococcus parauberis. The CIP-resistant clinical isolates had one base change responsible for a Ser-79${\rightarrow}$Thr in the QRDR of parC. However, the CIP-resistant in vitro mutants had an altered QRDR of parC (Ser-79${\rightarrow}$Ile) that differed from that of the isolates. None of the CIP-resistant S. parauberis clinical isolates or in vitro mutants exhibited amino acid changes in gyrA or gyrB. However, even though involvement in the increased resistance was not clear, an Arg-449${\rightarrow}$Ser mutation outside of the QRDR of parE was detected in CIP-resistant mutant 2P1. These results suggest that the topoisomerase IV gene, parC (and possibly parE, as well), is the primary ciprofloxacin target in S. parauberis. Additionally we established a high-resolution melting (HRM) assay capable of detecting the dominant mutation in four type II topoisomerase genes conferring ciprofloxacin resistance. These rapid and reliable assays may provide a convenient method of surveillance for genetic mutations conferring antibiotic resistance.

gyrA and gyrB Mutations in Quinolone-resistant Strains of Enterobacteriaceae Isolated from General Hospitals in Busan

  • Kim, Yun-Tae;Kim, Tae-Un
    • 대한의생명과학회지
    • /
    • 제13권2호
    • /
    • pp.141-148
    • /
    • 2007
  • We determined the sequences of the quinolone resistance-determining region (QRDR) of gyrA and gyrB for 21 clinical strains of Enterobacteriaceae resistant to ciprofloxacin, norfloxacin and levofloxacin. The clinical strains were isolated from the specimens of three general hospitals in Busan. In the present study, we found mutations in type II topoisomerase (DNA gyrase) genes for all strains. We confirmed that some genera of Enterobacteriaceae of clinical specimen exhibited decreased sensitivity to fluroquinolone due to changes in Ser-83$\rightarrow$Leu and Asp-87$\rightarrow$Asn types on gyrA and alterations in Glu-465$\rightarrow$Arg and Ser-492$\rightarrow$Asn type on gyrB. All the twenty-one strains had a missense mutation in gyrA (codon 83 and 87). Three of them had an additional mutation in gyrB (codon 465 or 492), but one of them had an additional mutation in gyrB (codon 426, 427, 491, 495 and 496). The strains which had two mutations in type II topoisomerase genes (gyrA and gyrB) were significantly more resistant to fluoroquinolones than those with a single mutation in gyrA (mean MICs of ciprofloxacin: $\geq8\mu$g/ml, mean MICs of levofloxacin: $\geq16\mu$g/ml). Interestingly, the examination of silent nucleotide changes n the gyrA and gyrB genes revealed six different patterns of DNA polymorphism, respectively. Fifteen strains of the twenty-one strains bearing the gyrase A mutation shared the same polymorphism and eleven strains of the twenty-one strains bearing the gyrase B mutation shared the same polymorphism.

  • PDF

Antibacterial properties of quinolones

  • Yoshida, Hiroaki
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.40-47
    • /
    • 1997
  • New quinolones generally have a broad antibacterial spectrum against gram-positive, gram-negative, glucose-nonfermenting and anaerobic bacteria. Some of newly developed quinolones have potent activities against S. aureus including MRSA, S.pneumoniae including PRSP, B. fragilis, chlamydiae, mycoplasmas and mycobacteria as well, and show good activities against various strains resistant to antibacterial agents of other classes. Quinolones display postantibiotic effects in vitro and are bactericidal at concentrations similar to or twice that of the minimum inhibitory concentrations (MICs) for susceptible pathogens. In experimental murine infection models including systemic infections with various pathogens such as S. aureus, S. pyogenes, S. pneumoniae, E. coli and P. aeruginosa, quinolones have shown good oral efficacy as well as parenteral efficacy. Good oral absorption and good tissue penetration of quinolones account for good therapeutic effects in clinical settings. The target of quinolones are two structurally related type II topoisomerases, DNA gyrase and DNA topoisomerase IV. Quinolones are shown to stabilize the ternary quinolone-gyrase-DNA complex and inhibit the religation of the cleaved double-stranded DNA. Bacteria can acquire resistance to quinolones by mutations of these target enzymes. Mutation sites and amino acid changes in DNA gyrase and DNA topoisomerase IV are similar in the organisms examined, suggesting that the mechanism of quinolone resistance in the target enzymes is essentially the same among various organisms. Quinolones act on both the target enzymes to different degrees depending on the organisms or agents tested, and bacteria become highly resistant to quinolones in a step-wise fashion. Incomplete cross-resistance among quinolones in some strains of E. coli and S. aureus suggests the possibility of finding quinolones active against quinolone-resistant strains which are prevailing now. To find such quinolones, the potency toward two target enzymes and the membrane permeability including influx and/or efflux systems should be taken into account.

  • PDF

Identification of Mutations in Protein Kinase CKIIβ Subunit That Affect Its Binding to Ribosomal Protein L41 and Homodimerization

  • Ahn, Bong-Hyun;Lee, Ji-Hoon;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제36권4호
    • /
    • pp.344-348
    • /
    • 2003
  • Protein kinase CKII is composed of two catalytic ($\alpha$ or $\alpha$') subunits and two regulatory ($\beta$) subunits. The $CKII{\beta}$ subunit is thought to mediate the tetramer formation and interact with other target proteins. However, its physiological function remains obscure. In this study, point mutants of $CKII{\beta}$ that are defective for the L41 binding were isolated by using the reverse two-hybrid system. A sequence analysis of the point mutants revealed that Asp-26, Met-52, and Met-78 of $CKII{\beta}$ are critical for L41 binding; Asn-67 (and/or Lys-139) and Met-52 are important for $CKII{\beta}$ homodimerization. Two point mutants, R75 and R83, of $CKII{\beta}$ interacted with L5, topoisomerase $II{\beta}$, and CKBBP1/SAG, but not with the wild-type $CKII{\beta}$. This indicates that $CKII{\beta}$ homodimerization is not a prerequisite for its binding to target proteins. These $CKII{\beta}$ point mutants may be useful in exploring the biochemical physiological functions of $CKII{\beta}$.

Molecular Cloning of the DNA Gyrase Genes from Methylovorus Sp. Strain SS1 and the Mechanism of Intrinsic Quinolone Resistance in Methylotrophic Bacteria

  • Kim, Kwang-Seo;Kim, Jeong Hoon;Kim, Do Yeob;Kim, Hyun Jong;Park, Sang Tae;Kim, Young Min
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.392-400
    • /
    • 2005
  • The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The $Ser^{83}$ to Thr substitution in Methylovorus sp. strain SS1, and the $Ser^{83}$ to Leu and $Asp^{87}$ to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones.