• Title/Summary/Keyword: Type I interferon

Search Result 77, Processing Time 0.03 seconds

Flagellin-Stimulated Production of Interferon-β Promotes Anti-Flagellin IgG2c and IgA Responses

  • Kang, Wondae;Park, Areum;Huh, Ji-Won;You, Gihoon;Jung, Da-Jung;Song, Manki;Lee, Heung Kyu;Kim, You-Me
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.251-263
    • /
    • 2020
  • Flagellin, a major structural protein of the flagellum found in all motile bacteria, activates the TLR5- or NLRC4 inflammasome-dependent signaling pathway to induce innate immune responses. Flagellin can also serve as a specific antigen for the adaptive immune system and stimulate anti-flagellin antibody responses. Failure to recognize commensal-derived flagellin in TLR5-deficient mice leads to the reduction in anti-flagellin IgA antibodies at steady state and causes microbial dysbiosis and mucosal barrier breach by flagellated bacteria to promote chronic intestinal inflammation. Despite the important role of anti-flagellin antibodies in maintaining the intestinal homeostasis, regulatory mechanisms underlying the flagellin-specific antibody responses are not well understood. In this study, we show that flagellin induces interferon-β (IFN-β) production and subsequently activates type I IFN receptor signaling in a TLR5- and MyD88-dependent manner in vitro and in vivo. Internalization of TLR5 from the plasma membrane to the acidic environment of endolysosomes was required for the production of IFN-β, but not for other pro-inflammatory cytokines. In addition, we found that anti-flagellin IgG2c and IgA responses were severely impaired in interferon-alpha receptor 1 (IFNAR1)-deficient mice, suggesting that IFN-β produced by the flagellin stimulation regulates anti-flagellin antibody class switching. Our findings shed a new light on the regulation of flagellin-mediated immune activation and may help find new strategies to promote the intestinal health and develop mucosal vaccines.

Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells

  • Shen, Ting;Lee, Jae-Hwi;Park, Myung-Hwan;Lee, Yong-Gyu;Rho, Ho-Sik;Kwak, Yi-Seong;Rhee, Man-Hee;Park, Yung-Chul;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.200-208
    • /
    • 2011
  • Ginsenoside (G) $Rp_1$ is a ginseng saponin derivative with anti-cancer and anti-inflammatory activities. In this study, we examined the mechanism by which G-$Rp_1$ inhibits inflammatory responses of cells. We did this using a strategy in which DNA constructs containing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) promoters were transfected into HEK293 cells. G-$Rp_1$ strongly inhibited the promoter activities of COX-2 and iNOS; it also inhibited lipopolysaccharide induced upregulation of COX-2 and iNOS mRNA levels in RAW264.7 cells. In HEK293 cells G-$Rp_1$ did not suppress TANK binding kinase 1-, Toll-interleukin-1 receptor-domain-containing adapter-inducing interferon-${\beta}$ (TRIF)-, TRIF-related adaptor molecule (TRAM)-, or activation of interferon regulatory factor (IRF)-3 and nuclear factor (NF)-${\kappa}$B by the myeloid differentiation primary response gene (MyD88)-induced. However, G-$Rp_1$ strongly suppressed NF-${\kappa}$B activation induced by I${\kappa}$B kinase (IKK)${\beta}$ in HEK293 cells. Consistent with these results, G-$Rp_1$ substantially inhibited IKK${\beta}$-induced phosphorylation of $I{\kappa}B{\alpha}$ and p65. These results suggest that G-$Rp_1$ is a novel anti-inflammatory ginsenoside analog that can be used to treat IKK${\beta}$/NF-${\kappa}$B-mediated inflammatory diseases.

Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I

  • Kang, Sangmin;Choi, Changsun;Choi, Insoo;Han, Kwi-Nam;Roh, Seong Woon;Choi, Jongsun;Kwon, Joseph;Park, Mi-Kyung;Kim, Seong-Jun;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1554-1562
    • /
    • 2018
  • The type I interferons (IFNs) play a vital role in activation of innate immunity in response to viral infection. Accordingly, viruses have evolved to employ various survival strategies to evade innate immune responses induced by type I IFNs. For example, hepatitis E virus (HEV) encoded papain-like cysteine protease (PCP) has been shown to inhibit IFN activation signaling by suppressing K63-linked de-ubiquitination of retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1), thus effectively inhibiting down-stream activation of IFN signaling. In the present study, we demonstrated that HEV inhibits polyinosinic-polycytidylic acid (poly(I:C))-induced $IFN-{\beta}$ transcriptional induction. Moreover, by using reporter assay with individual HEV-encoded gene, we showed that HEV methyltransferase (MeT), a non-structural protein, significantly decreases RIG-I-induced $IFN-{\beta}$ induction and $NF-{\kappa}B$ signaling activities in a dose-dependent manner. Taken together, we report here that MeT, along with PCP, is responsible for the inhibition of RIG-I-induced activation of type I IFNs, expanding the list of HEV-encoded antagonists of the host innate immunity.

Post HCV Infection Due to MX Gene Stimulation Produced Post Treatment with Imported and Locally Produced Egyptian Biosimilar IFN

  • Mohamed, Shereen H;Mahmoud, Nora F;Mohamed, Aly F;Kotb, Nahla S
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5635-5641
    • /
    • 2015
  • Background: Cirrhosis is regarded as a possible end stage of many liver diseases, including viral infection. It occurs when healthy liver tissue becomes damaged and is replaced by scar tissue and finally may lead to hepatocellular carcinoma. Interferons (IFNs)are two general categories, type I and II. Type I includes one beta interferon and over 20 different alpha interferons. Alpha interferons are very similar in how they work, interacting with other proteins on cells like receptors. The main objective of this study was to compare Mx gene productivity post different cell line treatment with imported and Egyptian biosimilar locally produced IFNs, as well as the efficacy of those tested IFNs. Also, an assessment was made of sensitivity of different cell lines as alternatives to that recommended for evaluation of antiviral activity. Materials and Methods: Different cell lines (Vero, MDBK and Wish) were employed to evaluate cytotoxicity using the MTT assay. Antiviral activity was evaluated compared with standard IFN against VSV, Indiana strain -156, on tested rh-IFNs (imported; innovated and Egyptian biosimilar locally produced IFNs) in the pre-treated cell lines previously mentioned. The virus was propagated in the Wish cell line as recommended. Finally we estimated up-regulation of the Mx gene as a biomarker. Results: Data recorded revealed that test IFNs were safe in test cell lines. Viability was around 100%. Locally tested interferon did not realize the international potency limits, while the imported one was accepted compared with the standard IFN. These results were the same either using infectivity titer reduction assay or crystal violet staining of residual non- infected cells. Mx protein production was cell type related and confirmed by the detected Mx gene expressed in imported and locally produced IFN pre-treated cell lines. The expression of the gene was arranged in the order of Vero> wish > MDBK for the imported IFN, while for the Egyptian biosimillar locally produced one it was MDBK> Vero> wish. With regard to the antiviral activity there was a significant difference of imported IFN potency compared with the locally produced IFN (P<0.05), the IFN potential (antiviral activity) was not cell line related and showed non-significant difference for each separate product. Conclusions: Vero cells can be used as an alternative cell line for evaluation of IFN potency in case of unavailable USP recommended cell lines. Alternative potency evaluation assay could be used and proved significant difference in IFN potency in case of local and imported agents. Evaluation of antiviral activity could be used in parallel to viral infectivity reduction assay for better accuracy. Mx gene can be used as a marker for IFN potential.

Short-Term High Expression of Interferon-Alpha Modulates Progression of Type 1 Diabetes in NOD Mice

  • Park, Mi-Kyoung;Seo, Su-Yeong;Hong, Sook-Hee;Kim, Hye-Jin;Park, Eun-Jin;Kim, Duk-Kyu;Lee, Hye-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Type I diabetes (T1D) is an organ-specific autoimmune disease caused by the T cell-mediated destruction of the insulin-producing ${\beta}$ cells in the pancreatic islets. The onset of T1D is the consequence of a progressive destruction of islet ${\beta}$ cells mediated by an imbalance between effector $CD4^+$ T helper (Th)1 and regulatory $CD4^+$ Th2 cell function. Since interferon-alpha (IFN-${\alpha}$) has been known to modulate immune function and autoimmunity, we investigated whether administration of adenoviralmediated IFN-${\alpha}$ gene would inhibit the diabetic process in NOD mice. The development of diabetes was significantly inhibited by a single injection of adenoviral-mediated IFN-${\alpha}$ gene before 8 weeks of age. Next, we examined the hypothesis that Th2-type cytokines are associated with host protection against autoimmune diabetes, whereas Th1-type cytokines are associated with pathogenesis of T1D. The expression of IFN-${\alpha}$ induced increase of serum IL-4 and IL-6 (Th2 cytokines) levels and decrease of serum IL-12 and IFN-${\gamma}$ (Th1 cytokines) levels. Therefore, overexpression of IFN-${\alpha}$ by adenoviralmediated delivery provides modulation of pathogenic progression and protection of NOD mice from T1D.

Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway

  • Ngan, Nguyen Thi Thuy;Kim, Seong-Jun;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1665-1674
    • /
    • 2019
  • Zika virus (ZIKV) is a mosquito-transmitted, emerging Flavivirus that causes Guillain-$Barr{\acute{e}}$ syndrome and microcephaly in adults and fetuses, respectively. Since ZIKV was first isolated in 1947, severe outbreaks have occurred at various places worldwide, including Yap Island in 2007, French Polynesia in 2013, and Brazil in 2015. Although incidences of ZIKV infection and dissemination have drastically increased, the mechanisms underlying the pathogenesis of ZIKV have not been sufficiently studied. In addition, despite extensive research, the exact roles of individual ZIKV genes in the viral evasion of the host innate immune responses remain elusive. Besides, it is still possible that more than one ZIKV-encoded protein may negatively affect type I interferon (IFN) induction. Hence, in this study, we aimed to determine the modulations of the IFN promoter activity, induced by the MDA5/RIG-I signaling pathway, by over-expressing individual ZIKV genes. Our results show that two nonstructural proteins, NS2A and NS4A, significantly down-regulated the promoter activity of IFN-${\beta}$ by inhibiting multiple signaling molecules involved in the activation of IFN-${\beta}$. Interestingly, while NS2A suppressed both full-length and constitutively active RIG-I, NS4A had inhibitory activity only on full-length RIG-I. In addition, while NS2A inhibited all forms of IRF3 (full-length, regulatory domain-deficient, and constitutively active), NS4A could not inhibit constitutively active IRF3-5D. Taken together, our results showed that NS2A and NS4A play major roles as antagonists of MDA5/RIG-I-mediated IFN-${\beta}$ induction and more importantly, these two viral proteins seem to inhibit induction of the type I IFN responses in differential mechanisms. We believe this study expands our understanding regarding the mechanisms via which ZIKV controls the innate immune responses in cells and may pave the way to development of ZIKV-specific therapeutics.

Association between Interferon-Inducible Protein 6 (IFI6) Polymorphisms and Hepatitis B Virus Clearance

  • Park, Geun-Hee;Kim, Kyoung-Yeon;Cho, Sung Won;Cheong, Jae Youn;Yu, Gyeong Im;Shin, Dong Hoon;Kwack, Kyu Bum
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • CD8+T cells are key factors mediating hepatitis B virus (HBV) clearance. However, these cells are killed through HBV-induced apoptosis during the antigen-presenting period in HBV-induced chronic liver disease (CLD) patients. Interferon-inducible protein 6 (IFI6) delays type I interferon-induced apoptosis in cells. We hypothesized that single nucleotide polymorphisms (SNPs) in the IFI6 could affect the chronicity of CLD. The present study included a discovery stage, in which 195 CLD patients, including chronic hepatitis B (HEP) and cirrhosis patients and 107 spontaneous recovery (SR) controls, were analyzed. The genotype distributions of rs2808426 (C > T) and rs10902662 (C > T) were significantly different between the SR and HEP groups (odds ratio [OR], 6.60; 95% confidence interval [CI], 1.64 to 26.52, p = 0.008 for both SNPs) and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). The distribution of diplotypes that contained these SNPs was significantly different between the SR and HEP groups (OR, 6.58; 95% CI, 1.63 to 25.59; p = 0.008 and OR, 0.15; 95% CI, 0.04 to 0.61; p = 0.008, respectively) and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). We were unable to replicate the association shown by secondary enrolled samples. A large-scale validation study should be performed to confirm the association between IFI6 and HBV clearance.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

  • Lee, Hye-Ra;Choi, Un Yung;Hwang, Sung-Woo;Kim, Stephanie;Jung, Jae U.
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.777-782
    • /
    • 2016
  • The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

The Role of Plasmacytoid Dendritic Cells in Gut Health

  • Hye-Yeon Won;Ju-Young Lee;Dahye Ryu;Hyung-Taek Kim;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.6.1-6.14
    • /
    • 2019
  • Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.