• Title/Summary/Keyword: Type 316LN 스테인리스강

검색결과 16건 처리시간 0.021초

Type 316LN 스테인리스 강의 크리프 수명 예측과 표준오차 분석 (Creep-Life Prediction and Standard Error Analysis of Type 316LN Stainless Steel)

  • 윤송남;김우곤;류우석;이원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1406-1411
    • /
    • 2005
  • The creep rupture data for type 316LN stainless steels were collected through literature survey or experimental data produced in KAERI. Using these data, polynomial equations for predicting creep life were obtained by Larson-Miller (L-M), Orr-Sherby-Dorn (O-S-D) and Manson-Haferd (M-H) etc. time-temperature parametric (TTP) methods. Standard error of estimate (SEE) values for the each parameter was obtained with different temperatures through the statistical process of the creep data. The results of L-M, O-S-D and M-H methods showed good creep-life prediction, but M-H method showed better agreement than L-M and O-S-D methods. Especially, it was found that SEE values of M-H method at $700^{\circ}C$ were lower than that of L-M and O-S-D methods.

  • PDF

SAW 법으로 용접된 Type 316LN 강의 크리프 성질 (Creep Properties of Type 316LN Steel Welded by the SAW Method)

  • 김우곤;윤송남;류우석;이원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.105-106
    • /
    • 2006
  • The creep properties have been evaluated for type 316LN stainless steel welded by the SAW method. The creep tests were conducted with different stress levels for both the base and weld metals at $550^{\circ}C\;and\;600^{\circ}C$. The results of the creep-rupture time of the weld metal did not show a large difference when compared to those of the base one, though it exhibited a little lower value at $600^{\circ}C$. The creep rate of the weld metal was lower than that of the base one at the same stress and rupture-time conditions. The creep-rupture ductility of the weld metal is found to be decreased by about 60%, compared to the base one. This is due to the decreasing of tensile elongation and the increasing of the yield stress in the weld metals.

  • PDF

시간-온도 파라미터 방법에 의한 Type 316LN 강의 크리프 수명 예측과 표준오차 분석 (Creep-Life Prediction and Standard Error Analysis of Type 316LN Stainless Steel by Time-Temperature Parametric Methods)

  • 윤송남;류우석;이원;김우곤
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.74-80
    • /
    • 2005
  • A number of creep rupture data for type 316LN stainless steels were collected through literature survey or experimental data produced in KAERI. Using these data, polynomial equations for predicting creep life were obtained by Larson-Miller (L-M), Orr-Sherby-Dorn (O-S-D) and Manson-Haferd (M-H) parameters using time-temperature parametric (TTP) methods. Standard error of estimate (SEE) values for the each parameter was obtained with different temperatures through the statistical process of the creep data. The results of L-M, O-S-D and M-H methods showed good creep-life prediction, but M-H method showed better agreement than L-M and O-S-D methods. Especially, it was found that SEE values of M-H method at $700^{\circ}C$ were lower than that of L-M and O-S-D methods.

Type 316LN 스테인리스강의 장시간 크리프 수명 예측을 위한 최소구속법의 적용 (Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel)

  • 김우곤;윤송남;류우석;이찬복
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.118-124
    • /
    • 2008
  • Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.

Type 316LN 스테인리스강의 크리프 수명예측과 오차분석 (Creep Life Prediction and Error Analysis for Type 316LN Stainless Steel)

  • 이원;윤송남;김우곤;류우석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.109-110
    • /
    • 2006
  • Various parametric methods, Larson-Miller (L-M), Orr-Sherby-Dorn (O-S-D), Manson-Haferd (M-H) parameters, and minimum commitment method (MCM), were used to predict longer rupture time from short-term creep data. A number of the creep data were collected through literature surveys and experimental data produced in KAERI for predicting the creep type of type 316LN SS. Polynomial equations for predicting the creep life were obtained by the time-temperature parameters (TTP) and the MCM. standard error (SE) and standard error or mean (SEM) values were compared for the each method with temperatures. The TTP methods were good in the creep-life prediction, but the MCM was much superior to the TTP ones at $700^{\circ}C\;and\;750^{\circ}C$. The MCM was found to be lower in the SE values compared to the TTP methods

  • PDF

참조응력을 이용한 316LN 스테인리스강의 크리프 해석 (Creep Analysis of Type 316LN Stainless Steel Using Reference Stress)

  • 김우곤;류우석
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.