• Title/Summary/Keyword: Tying Modeling

Search Result 14, Processing Time 0.019 seconds

The Usage of Phoneme Duration Information for Rejecting Garbage Sentences (소음문장 제거를 위한 음소지속시간 사용)

  • Koo Myoung-Wan;Kim Ho-Kyoung;Park Sung-Joon;Kim Jae-In
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.219-222
    • /
    • 2003
  • In this paper, we study the usage of phoneme duration information for rejection garbage sentence. First, we build a phoneme duration modeling in a speech recognition system based on dicicion tree state tying, We assume that phone duration has a Gamma distribution. Next, we build a verification module in which word-level confidence measure is used. Finally, we make a comparative study on phoneme duration with speech DB obtained from the live system. This DB consistes of OOT(out-of-task) and ING(in-grammar) utterences. the usage of phone duration information yields that OOT recognition rate is improved by 46% and that another 8.4% error rate is reduced when combined with utterence verification module.

  • PDF

Development of Tissue-Tool Interaction Simulation Algorithms for Rotator Cuff Surgery Scenario in Arthroscopic Surgery Training Simulator

  • Jo, Kyungmin;Bae, Eunkyung;You, Hyeonseok;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.154-164
    • /
    • 2020
  • Various simulator systems for surgery training have been developed and recently become more widely utilized with technology advancement and change in medical education adopting actively simulation-based training. The authors have developed tissue-instrument interaction modeling and graphical simulation algorithms for an arthroscopic surgery training simulator system. In this paper, we propose algorithms for basic surgical techniques, such as cutting, shaving, drilling, grasping, suturing and knot tying for rotator cuff surgery. The proposed method constructs a virtual 3-dimensional model from actual patient data and implements a real-time deformation of the surgical object model through interaction between ten types of arthroscopic surgical tools and a surgical object model. The implementation is based on the Simulation Open Framework Architecture (SOFA, Inria Foundation, France) and custom algorithms were implemented as pulg-in codes. Qualitative review of the developed results by physicians showed both feasibility and limitations of the system for actual use in surgery training.

Selective Activation of Cohesive Elements using MPC (다중점 구속조건을 이용한 응집요소의 선택적 활성화 기법)

  • Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.911-918
    • /
    • 2014
  • In this paper, a selective activation strategy of cohesive elements using user subroutine UMPC was studied as an efficient solution for the added compliance problem in cohesive zone model crack propagation analyses. The cohesive elements were inserted between every bulk elements in region where cracks were expected to initiate and propagate, but initially not activated by tying the cohesive nodes using multi-point constraints. During analyses, the cohesive elements for which specified criterion was met were selectively activated by releasing the constraints. The effect of initial cohesive stiffness and the release criterion on the crack propagation behavior was carefully investigated.

Modeling and Analysis of Dynamic Characteristic for Bundle Fluid System (집속체 유동계의 모델링과 운동 특성해석)

  • Kim, Jong-Sung;Heo, Yu;Kim, Yoon-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1643-1646
    • /
    • 2003
  • Drawing is a mechanical operation that attenuates thick material to an appropriate thickness for the next processing or end usage. When the input material has the form of a bundle or bundles made of very thin and long shaped wire or fibers, this attenuation operation is called "bundle drawing" or "drafting" Drafting is being used widely in manufacturing staple yarns. which is indispensable for the textile industry. However, the bundle processed by this operation undertake more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. Since long there have been many researches tying to find out factors affecting the irregularity of linear desity, to obtain optimal drafting conditions, to develop efficient measuring and analysis methods of linear density of bundle, etc., but there exists yet no fundamental equation describing the dynamic behavior of the flowing bundle during processing. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical lows representing physical variables, i.e. linear density and velocity as the dynamic state of bundle. The conservation of mass and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.

  • PDF