• 제목/요약/키워드: Two-zone model

검색결과 563건 처리시간 0.031초

Earth-Rockfill Dam사면파괴에 대한 신뢰도 연구(I) (A Reliability Analysis of Slope Stability of Earth-Rockfill Dam)

  • 박현종;이인모
    • 한국지반공학회지:지반
    • /
    • 제7권3호
    • /
    • pp.21-32
    • /
    • 1991
  • 본 연구에서는 복합 zone을 가진 rockfill dam성토 재료의 강도정수들과 core zone에서의 간극 수압의 불확정성을 고려할 수 있도록, 성토 재료의 공간적인 변화의 불확실성, 시료수의 제한에 의 한 불확정성에 실험실 결과와 현장 결과와의 차이에 따른 model 오차의 영향을 고려한 종합적인 설계변수들의 불확정성을 규명하였으며 core zone의 간극수압과 rockfill zone의 내부 마찰각을 bayeg 이론을 이용하여 불확정성을 Updating할 수 있는 방법을 제시하였다. 사면 안정 해석에서 시공직후 상, 하류, 만수위 상, 하류 수위, 급강하 시의 2차원 사면안정해석 과 end effect 영향을 고려한 3차원사면 안정해석을 하였다. 본 목적을 위하여 복합 zone을 가진 rockfill dam의 사면 안정해석에서 end effect의 영향을 고려한 3차원 사면안정해석 Program인 "ESTABL"을 개발하였으며, 파괴 사면의 강도정수와 간극수압의 변동계수를 구하는 프로그램 "COV", 복합 zone사면 안전율의 변동계수를 구하는 프로그램 "PCOV"을 개발하였다. 사면안정해석 결과 3차원안전율이 2차원안전율보다 약 200A정도 크게 나타나므로 end restraint 효과가 상당히 큼을 알 수 있다. 3차원사면안정은 근본적으로 system reliability 문제이 므로 안전율의 평균간보다 그 불확정성이 더 큰 영향을 미침을 보여준다. 또한 기초설계 치로 설계 를 마친후 시공중 혹은 추가로 각종 계측치가 있을 때 updating 이론을 이용하여 신뢰도를 증가시 킬 수 있음을 보여주며 강도계수의 변화에 의한 파괴확률의 변화는 점착력의 불확정성이 내부마찰 각의 불확정성보다 민감하게 영향을 미침을 보여준다.찰 각의 불확정성보다 민감하게 영향을 미침을 보여준다.

  • PDF

영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구 (Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging)

  • 임용훈;허강열
    • 한국연소학회지
    • /
    • 제8권4호
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

3차원 유한요소법을 이용한 용접시편의 파괴 해석 (Fracture analysis of weld specimen using 3-dimensional finite element method)

  • 양승용;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.385-390
    • /
    • 2005
  • A specimen with residual stress due to welding was analyzed by three-dimensional cohesive zone model. The residual stress distribution was calculated by simulating welding process, and cohesive elements were located along crack propagation planes. Crack growth is possible since two planes of the cohesive element are separated beyond a maximum load carrying capacity. Stress fields around a crack tip are compared for specimens with and without residual stresses. Load-displacement curves and crack growth behaviors are also examined.

  • PDF

암반의 불균질성을 고려한 불포화대 지하수 유동 평가 (Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition)

  • 하재철;이정환;정재열;정해룡
    • 지질공학
    • /
    • 제26권1호
    • /
    • pp.87-99
    • /
    • 2016
  • 본 연구에서는 단열을 포함하는 불포화 암반에서의 지하수 유동 흐름을 예측하기 위한 2차원 수치 모델링을 수행하였다. 특히, 불연속 단열망 모델링(Dscrete Fractured Network, DFN)을 통하여 도출된 투수계수의 분포를 나타내는 k-field를 모델링 입력변수로 적용하였다. 투수계수 차이는 불포화대에서 지하수의 이동속도 차이를 야기시키는 중요한 인자로 적용되었다. 연구지역의 지표 토양층으로부터 지하 대수층까지의 불포화대 깊이를 적용하여 지하수 유동 모델링의 초기조건을 실제와 유사하게 설정하였다. 강우의 지표 침투율은 인공구조물과 자연 토양층의 침투율 차이를 적용하여 실제 불포화 암반을 거쳐서 포화대까지 지하수의 이동흐름을 해석하고 시각화하였다. 특히, 오염물질의 이동 시작점이 될 수 있는 인공구조물의 하부에 모니터링 지점을 설정하여 실제 오염물질원이 지하수에 용해되어 불포화대를 이동할 때의 경로를 예측 하였으며 중력방향인 직하부로 이동하는 것을 확인되었다.

Mathematical Modeling of Zone Drawing Process

  • Kim, Hyungsup;Cho, Kwang-Soo;Ji, Byung-Chul
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.206-212
    • /
    • 2004
  • To provide guidelines and a basic understanding of static and continuous zone drawing processes, we propose two different mathematical models in terms of the processing conditions and material parameters. Although the models are not finely tuned, because of assumptions made, they are still useful for the analysis of the process and for predicting the processibility.

혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수치해석 (Numerical Study on Flow Patterns in a Stirred Tank with Impeller Types)

  • 송길섭;오석영;오정진
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.29-35
    • /
    • 2002
  • The present study is concerned with the flow patterns induced by various impellers in a rectangular tank. Impellers are FBT (Flat blade turbine), PBT (Pitched blade turbine), Shroud turbine, Rushton turbine, and Helical ribbon turbine types. The solutions of flows in moving reference frames require the use of 'moving' cell zone. The moving zone approaches are based on MRF (Multiple reference frame), which is a steady-state approximation and sliding method, which is an unsteady-state approximation. Numerical results using two moving zone approaches we compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper, we simulated the flow patterns with above-mentioned moving zone approaches and impellers. Turbulence model used is RNG $k-{\epsilon}$ model. Sliding-mesh method is more effective than MRF for simulating the rectangular tank with inlet and outlet. RNG $k-{\epsilon}$ model strongly underestimates the velocity of experimental data and velocity by Chen & Kim's model, but it seems to be correctly predicted in overall distribution.

2차원 이송-확산 방정식을 이용한 해안에서의 부유사 해석 (Analysis of Suspended Load using A Two-Dimensional Advection-Diffusion Equation in Coastal Zone)

  • 강규영;김수진;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.177-180
    • /
    • 2007
  • Numerical simulations on the suspended load in the Do jang fish port are carried out. Suspended load is analysed by using the two-dimensional advection-diffusion equation. To describe behaviors of a pollutant in costal zone, a split-operator method is applied to the numerical model. The advection part is first solved by SOWMAC and then the diffusion part is solved by a three-level locally implicit scheme.

  • PDF

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • 제19권1E호
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • 제1권3호
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

Phenomenological Combustion Modeling of a Direct Injection Diesel Engine with In-Cylinder Flow Effects

  • Im, Yong-H.;Huh, Kang-Y.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.569-581
    • /
    • 2000
  • A cycle simulation program is developed and its predictions are compared with the test bed measurements of a direct injection (DI) diesel engine. It is based on the mass and energy conservation equations with phenomenological models for diesel combustion. Two modeling approaches for combustion have been tested; a multi-zone model by Hiroyasu et al (1976) and the other one coupled with an in-cylinder flow model. The results of the two combustion models are compared with the measured imep, pressure trace and NOx and soot emissions over a range of the engine loads and speeds. A parametric study is performed for the fuel injection timing and pressure, the swirl ratio, and the squish area. The calculation results agree with the measured data, and with intuitive understanding of the general operating characteristics of a DI diesel engine.

  • PDF