• Title/Summary/Keyword: Two-stage refrigeration

Search Result 86, Processing Time 0.027 seconds

Performance Comparison of Various Types of $CO_2$ Compressors for Heat Pump Water Heater Application

  • Kim, Hyun-Jin;Kim, Woo-Young;Ahn, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical simulations for scroll, two-stage twin rotary, and two-cylinder reciprocating compressors have been carried out to understand the effectiveness of each type compressor for heat pump water heater application using $CO_2$ as refrigerant. For suction pressure of 3.5 MPa and discharge pressure of 9 MPa, clearance volume ratio of the reciprocating compressor needs to be about 5% or less to have the volumetric efficiency comparable to that of the scroll compressor with tip clearance of $5\;{\mu}m$. Volumetric efficiency of the scroll compressor is quite sensitive to tip clearance. Adiabatic efficiency of the twin rotary compressor was calculated to be the lowest among the three types, and the most severe drawback of the $CO_2$ scroll compressor was a significant increase in the mechanical loss at the thrust surface supporting the orbiting scroll member. While the scroll compressor showed very smooth torque load variation, peak-to-peak torque variations of the twin rotary and two-cylinder reciprocating compressors were about 50% and 250%, respectively.

Experiment on Collection Characteristics of Sub micron Particles in Two-Stage Parallel-Plate Electrostatic Precipitators (2단 평행판 전기집진기의 서브마이크론 입자 포집특성 실험)

  • Oh, M.D.;Yoo, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.237-246
    • /
    • 1994
  • Experimental data are reported for charging and collection of NaCl aerosols in the 0.03- to $0.2{\mu}m$-geometric-mean-diameter range in 2-stage parallel-plate electrostatic precipitators. The NaCl aerosols are generated with geometric standard deviation of about 1.74 and particle generation rate of about 10^9 particles/see by the constant output atomizer and injected into the air flow in the clean wind-tunnel. The 2-stage parallel-plate electrostatic precipitator installed in the test section of the wind-tunnel is operated with a positive corona discharge. The NaCl aerosols in the channel flow are sampled and transported to the aerosol particle number concentration measurement system by using the isoaxial sampling and transport system constructed based on the Okazaki and Willeke design. The aerosol particle number concentration measurement system measures the size distribution of submicrometer aerosols by an electrical mobility detection technique. It is confirmed from comparing the measured collection efficiencies in this study and the predicted ones by our previous theoretical analysis that the predicted collection efficiencies agree well with the experimental ones. It is also found from the comparison that below about $0.02{\mu}m$ all particles are not charged and the uncharged particles are not collected, and consequently 2-stage parallel-plate electrostatic precipitators are not suitable for that particle size range.

  • PDF

Orientation dependence of GM-type pulse tube refrigerator (GM형 맥동관 냉동기의 저온부 경사도에 따른 냉각 성능 특성 연구)

  • Ko, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je;Hong, Yong-Ju;Yeom, Han-Kil;Lee, Chung-Soo;Kang, In-Su;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.48-52
    • /
    • 2012
  • This paper describes experimental study on the orientation dependence of GM-type pulse tube refrigerator with helium and neon as working gas. A pulse tube refrigerator generates refrigeration work with gas expansion by gas displacer in the pulse tube. The pulse tube is only filled with working gas and there exists secondary flow due to large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube with orifice valve as a phase control device is fabricated and tested. The fabricated pulse tube refrigerator is tested with two different working gases of helium and neon. First, optimal valve opening and operating frequency are determined with experimental results of no-load test. And then, the variation of no-load temperature as orientation angle of cold-head is measured for two different working gases. Effect of orientation dependence of cold-head as working gas is discussed with experimental results.

An Economic Analysis of a Secondary Waste Heat Recovery Geothermal Heating System (2단 가열식 지열시스템의 경제성 분석)

  • Shin, Jeong Soo;Kim, Sean Hay
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.249-258
    • /
    • 2017
  • This paper provides an economic analysis of a new geothermal heat pump system that reuses condenser waste heat from a Ground Source Heat Pump ($GSHP_{ch}$) to provide energy for a hot water Ground Source heat pump ($GSHP_{hw}$). After conducting feasibility tests using GLD and TRNSYS simulations, the proposed system was effectively installed and thoroughly tested. We observe that 1) the Coefficient of Performance (COP) of the $GSHP_{hw}$ and the $GSHP_{ch}$ during cooling mode improves by up to 62% and 7%, respectively; 2) the number of bore holes can be reduced by two; and 3) the hot water supply temperature of the $GSHP_{hw}$ increases by up to $60^{\circ}C$. We further conclude that 1) the reduction of two bore holes can save approximately ten million Won from the initial cost investment; and 2) the increased COP of the $GSHP_{hw}$ can save approximately one million Won in annual electricity costs.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

A Study on the Multi-level Optimization Method for Heat Source System Design (다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.

Design Capacity Evaluation of 2-stage Hot Water Heat Exchanger in Apartment Mechanical Rooms with District Heating System (지역난방 공동주택에 설치하는 급탕 2단 열교환기의 용량 적정성 평가에 관한 연구)

  • Chung, Kwang-Seop;Sa, Ki-Yong;Kim, Lae-Hyun;Lee, Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.456-461
    • /
    • 2009
  • Recently, an increasing interest in district heating system has emerged rapidly, In this paper, the physical measurements and data to be monitoring through the internet were carried out with regard to hot water heating energy consumption at the three apartment housings with district heating system in Sang-am district of Seoul, Korea, Measurements were made of the thermal factors such as the pressure of heating pipe, flow rates, hot water temperature and etc, The objective of this study is to compare the design capacity of reheat exchanger with that of preheat exchanger in order to evaluate for the number of plates of two exchangers to be distributed properly.

Gas Pulsation Analysis in a T-Shaped Suction Passage of a CO2 Twin Rotary Compressor (CO2 트윈 로타리 압축기의 흡입관로에서의 가스맥동 해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.549-555
    • /
    • 2011
  • For a $CO_2$ one-stage twin rotary compressor, a T-shaped suction port was used to effectively supply the suction gas stream into two individual suction chambers of the twin cylinders. Suction gas pulsations were observed in the pressure sensor signals and these were simulated by using the acoustic modeling of Helmholz resonators in parallel. The module of acoustic modeling was combined to a computer simulation program for the compressor performance. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Particularly, good agreement on P-V diagram between the simulation and the test was obtained.

Analysis on the Drying Performance with the Flow Rate of Circulation Air in a Heat Pump Dryer (순환 공기 유량의 변화를 고려한 열펌프 건조기의 성능 해석)

  • Lee, Kong-Hoon;Kim, Oak-Joong;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The simulation of a heat pump dryer has been carried out to figure out the effect of air flow rate on the drying performance represented by MER, SMER, and so on. The simulation includes the analyses of one-stage heat pump cycle and simple drying process using the drying efficiency. The heat pump cycle with Refrigerant 134a has been considered. In the dryer, some of drying air from the drying chamber flows through the heat pump system, the rest of air bypasses the heat pump system. The two air flows joins before the drying chamber inlet. The performance parameters considered in the present study are MER, SMER, the temperature and humidity of drying air. Those parameters are compared for different total air flow rate or bypass air flow rate.

A Study on the Improvement of Maintaining Temperature of Aviation Dangerous Goods (항공 운송 위험물의 정온 유지 개선방안)

  • Se-Cheol Shin;Hyung-Hwan An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2023
  • According to the study and experiments performed on the Improvement of Maintaining Temperature of Aviation Dangerous Goods, a conclusion was drawn that clear technical guidelines should be established from the design and assembly stage of temperature-controlled packaging, taking into account actual transportation environment. In particular, profiles consisting of only two types of summer and winter are difficult to adjust flexibly in transportation process with severe weather and temperature changes such as spring and fall. To this end, there is a need to establish a compromise profile configuration for summer and winter. It was also found that the condition of the refrigerant, temperature control, and the speed of the packaging operation have a significant impact on maintaining constant temperature. Therefore, all packing operations need to be completed within a short period of time in the environment close to the target temperature. The current packing instructions provided by packaging manufacturers do not provide precise instructions on post-conditioning, but the experiments in this study confirmed that post-conditioning is very important for maintaining the target temperature, so it is necessary to provide precise legal packing technical instructions.