• Title/Summary/Keyword: Two-stage compression refrigeration system

Search Result 23, Processing Time 0.021 seconds

Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle ($CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

Performance Analysis of Two-stage Compression and Two-stage Expansion Refrigeration System using Freon Refrigerants (친환경 프레온 냉매를 이용하는 단압축 단팽창 냉동시스템의 성능예측)

  • Roh, Geun-Sang;Kim, Jong-Ryeol
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.2
    • /
    • pp.301-306
    • /
    • 2013
  • In this paper, cycle performance analysis of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants is presented to offer the basic design data for the operating parameters of the system. Alternative freon refrigerant for freon refrigerant R22 were used as working fluids in this study. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, and mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of two-stage compression and two-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ratio of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants have an effect on COP of this system.

Performance Comparison of Two-stage Compression Refrigeration System Using R404A (R410A용 2단 압축 1단 팽창 냉동시스템의 성능 분석)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Jo, Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • This paper present the performance characteristics of R404A two-stage compression refrigeration system. The operating parameters considered in this study include evaporating and condensing temperature, subcooling and superheating degree, compressor efficiency. The main results were summarized as follows: The COP of two-stage compression refrigeration system using R404A has an effect on the variation of evaporation temperature, condensation temperature, subcooling degree and compressor efficiency, but not an effect on the superheating degree. R404A two-stage compression refrigeration system is unstable because COP of this system is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. This is inefficient for long-term use.

Performance Analysis of Two-stage Compression Refrigeration System with Internal Heat Exchanger Applied Various Refrigerants (다양한 냉매를 적용한 내부열교환기 부착 2단 압축 냉동시스템의 성능 분석)

  • Yoon, Jung-In;Heo, Seong-Kwan;Je, Jae-Myun;Jeon, Min-Ju;Son, Chang-Hyo;Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.82-88
    • /
    • 2015
  • In this paper, cycle performance analysis of two-stage compression and one-stage expansion refrigeration system applied various refrigerants is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include degree of superheating and subcooling, compressor efficiency, evaporation temperature, condensing temperature, mass flow rate ration into inter-cooler, effectiveness of internal heat exchanger. The main results were summarized as follows : The COP of two-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling, mass flow rate ration of inter-cooler, evaporation temperature, but decreases with the increasing condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of two-stage compression and 1-stage expansion using substitute refrigerant have an effect on COP of this system. The COP of alternative refrigerants was higher than the COP of R22 in this study, although the COP of some mixed refrigerants were lower than COP of R22.

Performance comparison of cascade refrigerator and two-stage compression refrigerator (캐스케이드 냉동시스템과 2단 압축 1단 팽창식 냉동 시스템의 성능 비교)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.625-631
    • /
    • 2014
  • In order to obtain a low evaporation temperature ranging from $-30^{\circ}C{\sim}-50^{\circ}C$, a cascade refrigeration system and two-stage compression one-stage expansion refrigeration system is required. However, the research results of performance comparison of these refrigeration system are very scarce. This paper were compared the performance characteristics of R744-R404A cascade refrigeration system and R404A two-stage compression refrigeration system. The COP of R404A two-stage compression refrigeration system is about 36~57% greater than that of R744-R404A cascade refrigeration system in the range of evaporation temperature of $-30^{\circ}C{\sim}-50^{\circ}C$. But R404A two-stage compression refrigeration system is unstable because COP is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. In this case, not efficient for long-term use. Whereas R744-R404A cascade refrigeration system using natural refrigerants. Therefore, it is environmentally friendly. And this system is high-efficiency refrigeration system. The reason it can be configured by selecting the suitable refrigerant at high-temperature side and low-temperature side. From the above results, select the appropriate low temperature refrigeration system by considering the environmental and performance aspects.

Performance Analysis of a Seawater Ice Machine Applied Two-stage vapor compression refrigeration system for Various Refrigerants (2단 증기 압축식 냉동시스템을 적용한 해상용 제빙장치의 냉매에 따른 성능 분석)

  • Yoon, Jeong-In;Son, Chang-Hyo;Heo, Seong-Kwan;Jeon, Min-Joo;Jeon, Tae-Young
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.85-90
    • /
    • 2016
  • Coefficient of performance (COP) for two-stage compression system is investigated in this paper to develop seawater ice machine. The system performance is analyzed with respect to degrees of superheating and subcooling, condensing and evaporating temperatures, compression and mechanical efficiencies and mass flow ratio in an inter-cooler. The main results are summarized as follows : The COP of the system grows when the mass flow ratio, subcooling degree and evaporating temperature edge up. Contrariwise, the system performance descends in case that superheating degree and condensing temperature increase. The most effective factor for the COP is the mass flow rate ratio. Each refrigerant has different limitation for a value of the mass flow ratio in the inter-cooler because of difference in material property.

An Experimental Study on Performance Characteristics of Two-Stage Compression Refrigeration Systems (2단압축 냉동장치의 성능특성에 관한 실험적 연구)

  • 김재돌;오후규;김성규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.25-32
    • /
    • 1994
  • The characteristics of the R-22 two-stage compression refrigeration systems were investigated. The apparatus consisted of 0.5HP and 1HP hermetic reciprocating compressors for the high and low stage sides respectively, a condenser, an evaporator, a heat exchanger, four expansion valves, and two intercoolers. The experiments covered a range of refrigerant flow rates from 24 to 84kg/h, and the inlet temperature of cooling water in the condenser and heat source water in the evaporator ranged from 20 to 30$^.\circ}C$The results Showed that the refrigerant flow rate had greater effect on the refrigerating capacities, the compression efficiency and the coefficient of performance of two-stage compression systems than the inlet temperature of heat source water. And all these values were decreased with increasing inlet temperatures of the cooling water. The pressure drops in the evaporator of two-stage compression systems were decreased in proportion to the increase in the inlet temperature of the heat source and cooling water, but it was increased by the refrigerant flow rate.

  • PDF

A comparative study on the simulation of single-stage and multi-stage refrigeration cycle using propane as a refrigerant (프로판 냉매를 활용한 단일 및 다단 냉동 사이클의 전산모사 비교 연구)

  • Noh, Sanggyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3327-3335
    • /
    • 2014
  • In this study, comparison works have been performed for single-stage and multi-stage refrigeration cycle using propane as a refrigerant in order to cool down the natural gas stream. A comparative analysis has been performed for a single, two, three and four stage refrigeration cycle using propane as a refrigerant for cooling the natural gas stream. For the simulation, natural gas feedstock properties supplied by KOGAS were utilized and Peng-Robinson equation of state model was used. As the number of compression stages increase, the condenser heat duty is decreased. The refrigeration heat duty for a four-stage refrigeration cycle is decreased by 20.36% compared to that for a single-stage refrigeration cycle. Moreover, the total refrigerant circulation rate for a four-stage refrigeration system is was reduced by 14.53% compared to the single stage refrigeration cycle. The total compression power for a four-stage compression was reduced by 41.61% compared to the single stage compression.

Thermodynamic Design of J-T Neon Refrigeration System Utilizing Modified Roebuck Compression Device (변형 Roebuck 압축기를 이용한 J-T 네온 냉각시스템의 열역학적 설계)

  • 정제헌;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.432-438
    • /
    • 2003
  • This paper describes a modified Roebuck compression device as a potential compression device of a rotating cryogenic refrigeration system in superconducting machine such as generator or motor. The conventional cryogen transfer method from stationary refrigeration system to rotating system can be eliminated by an on-board cryogenic refrigeration system that utilizes well-designed multi-stage modified Roebuck compression device. This paper shows basic thermodynamic analysis of modified Roebuck compression device and its application for compressing neon at 77 K with substantial pressure ratio when the rotor diameter is 0.8 m with rotating speed of 3600 rpm. The device does not require any moving part in rotating frame, but two separate thermal reservoirs to convert thermal energy into mechanical compression work. The high temperature thermal reservoir is atmospheric environment at 300 K and the low temperature thermal reservoir is assumed as a liquid nitrogen bath at 77 K. The concept of the compression device in this paper demonstrates its usefulness of generating high-pressure neon at 77 K for rotating J-T neon refrigeration cycle of superconducting rotor.

Experimental Study on the Variation of the optimal charge with cycle option in the $CO_2$ Refrigeration (이산화탄소 냉동사이클에서 사이클 사양에 따른 최적충전량 변화에 관한 실험적 연구)

  • Cho, Hong-Hyun;Ryu, Chang-Gi;Lee, Ho-Seong;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.398-403
    • /
    • 2005
  • The cooling performance of a transcritical $CO_2$ cycle varies significantly with a variation of refrigerant charge amount. In this study, the performance of the $CO_2$ system was measured and analyzed by varying refrigerant charge amount with a change of cycle option. The applied cycle options are the single-stage compression system, two-stage compression with 1-EEV system, and two-stage compression with 2- EEV system. The optimum normalized charge were 0.363, 0.297, and 0.282 for the two-stage compression with 2-EEV system, two-stage compression with 1-EEV system, and single-stage compression system, respectively.

  • PDF