• Title/Summary/Keyword: Two-sludge

Search Result 396, Processing Time 0.025 seconds

Characteristics of Carbon Source Biosorption (유기물 생흡착 현상에 관한 기초연구)

  • Lee, Dong-Hoon;Lee, Doo-Jin;Kim, Seung-Jin;Chung, Jonwook;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Biosorption technology was used to remove hazardous materials from wastewater, herbicide, heavy metals, and radioactive compounds, based on binding capacities of various biological materials. Biosorption process can be explained by two steps; the first step is that target contaminants is in contact with microorganisms and the second is that the adsorbed target contaminants is infiltrated with inner cell through metabolically mediated or physico-chemical pathways of uptake. Until recently, no information is available to explain the definitive mechanism of biosorption. The purpose of this study is to evaluate biosorption capabilities of organic matters using activated sludge and to investigate affecting factors upon biosorption. Over 49% of organic matter could be removed by positive biosorption reaction under anoxic condition within 10 minutes. The biosorption capacities were constant at around 50 mg-COD/mg-MLSS for all batch experiments. As starvation time increased under aerobic or anaerobic conditions, biosorption capacity increased since higher stressed microorganisms by starvation was more brisk. Starvation stress of microorganisms was higher at aerobic condition than anaerobic one. As temperature increased or easily biodegradable carbon sources were used, biosorption capacities increased. Consequently, biosorption can be estimated by biological -adsorbed capability of the bacterial cell-wall and we can achieve the cost-effective and non -residual denitrification with applying biosorption to the bio-reduction of nitrate.

Characteristics of Hydrogen-sulfide(H2S) removal by a Biofilter with Organic Materials, Peat and Rock wool (유기담체인 Peat 및 Rock wool을 사용한 바이오필터에 의한 황화수소(H2S)의 제거특성)

  • Kim, Nam-jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.136-144
    • /
    • 2001
  • Two organic materials, peat and rock wool were used for removal of $H_2S$ by a biofilter inoculated with night soil sludge. By gradually increasing the inlet load of $H_2S$, the complete removal capacity, which was defined as the inlet load of $H_2S$ that was complete removed, and the maximum removal capacity of $H_2S$, which was the value when the removal capacity leveled off for organic materials, were estimated. Both values for Rock wool are larger than peat, based on a unit dry weight of material. By using kinetic analysis, the maximum removal rate of $H_2S$, $V_m$, and the saturation constant, $K_s$, were determined for all packing materials and the values of $V_m$ for rock wool was found to be larger. By using the kinetic parameters, the removal rates for $H_2S$ were compared both packing materials, and rock wool showed better performance for the removal of $H_2S$ in the inlet concentration range of 0~200ppm.

  • PDF

Investigation of influence of nano H-ZSM-5 and NH4-ZSM-5 zeolites on membrane fouling in semi batch MBR

  • Sajadian, Zahra Sadat;Hazrati, Hossein;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.183-190
    • /
    • 2020
  • The objectives of this research were the reduction of membrane fouling and improvement of sludge properties by using synthesized H-ZSM-5 and NH4-ZSM-5 zeolites. These two nano zeolites were synthesized and added to the membrane bioreactor (MBR). Three similar MBRs with the same operational condition were used in order to evaluate their effect on the mentioned matters. The evaluated parameters were trans-membrane pressure (TMP), Fourier-transform infrared spectroscopy (FTIR), particle size distribution (PSD), soluble microbial product (SMP), extracellular polymeric substances (EPS) and, excitation-emission matrix (EEM). The MBR0 was without any additional zeolite while 0.4 g/L of H-ZSM-5 and NH4-ZSM-5 were added to MBRHZSM-5 and MBRNH4ZSM-5, respectively. The COD removal of the MBR0, MBRH-ZSM-5 and MBRNH4-ZSM-5 were 87.5%, 93.3% and 94.6%, respectively. The TMP of the MBRH-ZSM-5 was 45% less than MBR0 whereas the reduction for MBRNH4-ZSM-5 was 65.5%. Also results showed that both H-ZSM-5 and NH4-ZSM-5 caused reduction in protein and polysaccharide related EPS but the NH4-ZSM-5 had better performance toward the elimination of organic compounds.

Efficient Anaerobic Digestion for Highly Concentrated Particulate Organic Wastewater (고농도 입자성 유기폐수의 고효율 혐기성 소화 공정)

  • Lee, Sungbum;Shin, Kyuchul;Kim, Huijoo;Kim, Hyunju;Choi, Changkyoo;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • It has been mentioned that CSTR (Completely Stirred Tank Reactor) and UASB (Upflow Anaerobic Sludge Blanket) processes, the existing anaerobic processes, have problems in the treatment of highly concentrated particulate organic wastewater (HCPOW). Therefore, this paper discusses the treatment possibility of distillery wastewater which is a typical HCPOW using ADEPT (anaerobic Digestion Elutriated Phased Treatment) process. In the comparison of CSTR and ADEPT, ADEPT produced much higher gas than that of CSTR removing more organic matters and suspended solids in ADEPT process, ADEPT had no effect on the decrease in pH by volatile fatty acids and showed steady pH in spite of relatively short HRT. In the results of removal rate according to recycle ratios between 6Qin and 2Qin in ADEPT, 6Qin showed high removal rate during the operation time. Therefore it appears that ADEPT had an applicability for the treatment of distillery wastewater. ADEPT could be a economical process, due to the short HRT, the energy recovery by the methane production, and the utilization for carbon source of produced organic acid from the ADEPT-acid reactor.

  • PDF

Synthesis of Cement Raw Materials by Melting of Industrial Wastes (폐기물의 용융처리에 의한 시멘트원료의 합성)

  • Hwang, Yeon;Sohn, Yong-Un;Chung, Hun-Saeng;Lee, Hong-Ki;Park, Hyun-Suh
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 1996
  • CZS(2Ca0 , SiO\ulcorner) phase of cement clinkcr was obtaincd by melting mixcd four indnstrial wasles of limestone sludge, waste Foundry sand, coal lly ash fiorn power plants and chernicas glasses. The effect ot mixing ratio of four rvastc mater~als ou the composnlg phascs in melled slag was investigated. Thc mixed wastes were meltcd to slag by heat under a constant basicity at 1370C. The shg consisted of p -CIS and C,AS(2CaO - A I P , . SiO,). The ratio of two phases was varied with mixing ~atioo f the waste materials. In order Lo increasc the amount ot j -C2S phase, the coal fly ash content should be reduced, while amount of the chemical glass be increased. The coal fly ash contcnt was the most imporlant factor in controlling phases of thc melted-slag.

  • PDF

Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N

  • Gasmi, Aicha;Heran, Marc;Hannachi, Ahmed;Grasmick, Alain
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.263-276
    • /
    • 2015
  • This paper deals with the influence of chemical oxygen demand to nitrogen ratio ((COD/N) ratio) on the performance of an membrane bioreactor. We aim at establishing relations between COD/N ratio, organisms' distribution and sludge properties (specific resistance to filtration (SRF) and membrane fouling). It is also essential to define new criteria to characterize the autotrophic microorganisms, as the measurements of apparent removal rates of ammonium seem irrelevant to characterize their specific activity. Two experiments (A and B) have been carried on a 30 L lab scale membrane bioreactor with low COD/N ratio (2.3 and 1.5). The obtained results clearly indicate the role of the COD/N ratio on the biomass distribution and performance of the membrane bioreactor. New specific criteria for characterising the autotrophic microorganisms activity, is also defined as the ratio of maximum ammonium rate to the specific oxygen uptake rate in the endogenous state for autotrophic bacteria which seem to be constant whatever the operating conditions are. They are about 24.5 to 23.8 $gN-NH_4{^+}/gO_2$, for run A and B, respectively. Moreover, the filterability of the biological suspension appear significantly lower, specific resistance to filtration and membrane fouling rate are less than $10^{14}m^{-2}$ and $0.07\;10^{12}m^{-1}.d^{-1}$ respectively, than in conventional MBR confirming the adv < antage of the membrane bioreactor functioning under low COD/N ratio.

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar

  • Froener, Muriel S.;Longhi, Marlon A.;de Souza, Fabiana;Rodriguez, Erich D.;Kirchheim, Ana Paula
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.

Property of geopolymers with aluminum smelting waste (알루미늄제련 폐기물을 첨가한 지오폴리머의 물성)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.143-150
    • /
    • 2022
  • Geopolymers were made by mixing IGCC slag and aluminum smelted waste and their properties were compared with those of IGCC slag based geopolymers. When two raw materials were mixed, the highest compressive strength was obtained at 1.78 of Si/Al ratio. Because the change in compressive strength and density was not so sensitive by the change in Si/Al ratio; that is, the permissible range of Si/Al ratio mixing ratio is broad, it was speculated this broad permissible range would be advantageous for commercialization. The Compressive strength of geopolymers including red mud was higher than that of IGCC based ones and the safety was confirmed by TCLP test. Therefore, it was concluded that the making geopolymers by mixing red mud not only enhances the properties of geopolymers but also gives a recyclability as safe construction materials.

Effects of Food Waste Mixed Organic Fertilizer Treatment on Growth and Yield of Capsicum annuum

  • Ho-Jun Gam;Yosep Kang;Eun-Jung Park;Seong-Heon Kim;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.109-109
    • /
    • 2022
  • The global population is increasing every year, and the amount of food waste is also increasing. Direct landfilling of food waste has been prohibited since 2005, and in accordance with the London Convention in 2013, the discharge of livestock manure, sewage sludge, and food waste into the sea is prohibited. In the case of incineration to treat the discharged food waste, the heat point is lowered due to the moisture in the food waste itself, so fuel must be added. Therefore, this study was conducted to get basic data for setting the limit of application by investigating the growth and yield of crops after treating food waste dry powder mixed fertilizer (MF) on red pepper. In the experiment, continuous cultivation was carried out for two years in 2021 (1st year) and 2022 (2nd year). The treatment groups were set as Not Treatment (NT), Chemical Fertilizer (CF), Mixed Fertilizer (MF), Mixed Fertilizer×2 (MF×2). After harvest, crop growth and yield were investigated. As a result of the 1st years of growth survey, CF, MF, MF×2 show significant difference in shoot length compared to NT. About fresh weight and dry weight, CF show significant difference compared to NT. The 2nd years of growth survey, the shoot and root length, fresh weight did not show significant difference with NT. In case of dry weight, MF is significant increased compared to NT. As a result of the yield survey of the 1st year, all treatment groups did not show a significance in yield compared to the NT. In case of 2nd year, all treatment groups show significantly increased value compared to NT. The yield of MF was highest among the treatment groups. In the future, it is thought that it is necessary to quantitatively evaluate the effect of food waste dry powder mixed fertilizer through additional experiments and continuous cultivation, and to establish an appropriate amount of use and establishment of a manual based on this.

  • PDF

Impact of Temperature and Alkalinity on Nitrogen Removal in the Start-up Period of Partial Nitrification in a Sequence Batch Reactor

  • Nguyen Van Tuyen;Tran Hung Thuan;Chu Xuan, Quang;Nhat Minh Dang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.541-547
    • /
    • 2023
  • The effect of temperature and influent alkalinity/ammonia (K/A) ratio on the start-up of the partial nitrification (PN) process for an activated sludge-based domestic wastewater treatment was studied. Two different sequence batch reactors (SBR) were operated at 26 ℃ and 32 ℃. The relationship between temperature and the concentration of free ammonia (FA) and free acid nitrite (FNA) was investigated. A stable PN process was achieved in the 32 ℃ reactor when the influent ammonium concentration was lower than 150 mg-N/L. In contrast, the PN process in the 26 ℃ reactor had a higher nitrite accumulation rate (NAR) and ammonium removal efficiency (ARE) when the influent ammonia concentration was increased to more than 150 mg-N/L. Then three different ranges of the K/A ratio were applied to an SBR reactor. In the K/A range of 2.48~1.65, the SBR reactor achieved the highest NAR ratio (75.78%). This ratio helps to achieve the appropriate level of alkalinity to maintain a stable pH and provide a sufficient amount of inorganic carbon source for the activity of microorganisms. At the same time, FA and FNA values also reached the threshold to inhibit nitrite-oxidizing bacteria (NOB) without a significant effect on ammonia-oxidizing bacteria (AOB). Results showed that the control of temperature and K/A ratio during the start-up period may be important in establishing a stable and steady PN process for the treatment of domestic wastewater.