• Title/Summary/Keyword: Two-phase motor

Search Result 426, Processing Time 0.025 seconds

New PWM Technique for Two-Phase Brushless DC Motor Drives

  • Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1107-1115
    • /
    • 2013
  • A new PWM technique for a two-phase BLDC motor fed by a two-phase eight-switch inverter is proposed in this paper. It is well known that a two-phase eight-switch inverter can significantly improve power output compared with a two-phase six-switch inverter in a two-phase motor drive. To drive the two-phase BLDC motor simply and effectively, two normal PWM strategies are investigated to manage speed regulation. However, under the conditions of low speed and light load, especially during the braking process, the current in a short time of one period is near zero, which is a discontinuous waveform every half period. To solve it, a novel PWM technique is investigated to improve the operational performance of normal technique. Using the new PWM scheme, the current continues every half period and the braking performance is improved. The effectiveness of the proposed PWM method is verified through the experiments.

Space-vector PWM Techniques for a Two-Phase Permanent Magnet Synchronous Motor Considering a Reduction in Switching Losses

  • Lin, Hai;Zhao, Fei;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.905-915
    • /
    • 2015
  • Two PWM techniques using space vector pulse-width modulation (SVPWM) are proposed for a two-phase permanent magnet synchronous motor (PMSM) driven by a two-phase eight-switch inverter. A two-phase motor with two symmetric stator windings is usually driven by a two-phase four-, six-, or eight-switch inverter. Compared with a four- and six-switch inverter, a two-phase eight-switch inverter can achieve larger power output. For two-phase motor drives, the SVPWM technique achieves more efficient DC bus voltage utilization and less harmonic distortion of the output voltage. For a two-phase PMSM fed by a two-phase eight-switch inverter under a normal SVPWM scheme, each of the eight PWM trigger signals for the inverter have to be changed twice in a cycle, causing a higher PWM frequency. Based on the normal SVPWM scheme, two effective SVPWM schemes are investigated in order to reduce the PWM frequency by rearranging four comparison values, while achieving the same function as the normal PWM scheme. A detailed explanation of the normal and two proposed SVPWM schemes is illustrated in the paper. The experimental results demonstrate that the proposed schemes achieve a better steady performance with lower switching losses compared with the normal scheme.

Digital Implementation of PWM Techniques for Two-phase Eight-switch Inverter fed Brushless DC Motor Drives

  • Lin, Hai;You, Yong-Min;Cheon, Sung-Rock;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.295-303
    • /
    • 2013
  • This paper reports an investigation of pulse width modulation (PWM) techniques for two-phase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electrical-degree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

Characteristics of the Two-phase Induction Motor By the Inverter Fed Control

  • Yang Byoung-Yull;Kwon Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.312-316
    • /
    • 2005
  • The single phase induction motor has been commonly applied to small-sized electrical appliances because of its low cost, but it has low efficiency and large torque ripple, and it is incapable of speed control. However, two-phase induction motors have small torque ripple, high efficiency and variable speed control, because they are inverter fed. In this paper, the dynamic characteristics of the two-phase induction motor, such as the torque ripple, current and speed, are analyzed by using the time-stepping finite element method, and compared with the cage-type single phase induction motor.

Vector Control for Two-Phase Inverter-Fed Two-Phase Induction Motors (2상 유도전동기 구동 2상 인버터의 벡터 제어)

  • Jang, Do-Hyun;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.310-317
    • /
    • 2007
  • In this paper, the system equation for the balanced two-phase induction motor is derived and the characteristics for speed control is also analyzed in the region of constant torque and constant power. The modified vector control theory is applied to two-phase motor drive system. The speed of two-phase motor drive can be controlled precisely by the modified indirect vector control theory. The modified vector control theory is simpler comparing to the conventional vector control because of the simpler axis transformation. The computer simulations and the experimental results presented to confirm the vector control for two-phase inverter fed two phase induction motor system.

Comparison of Dynamic Characteristics of the Single phase induction motor at Single Phase and Two Phase control (단상 유도전동기의 단상 및 2상 제어 운전시 동작특성 비교)

  • Yang, B.Y.;Kwon, S.H.;Kwon, B.I.;Lee, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.936-938
    • /
    • 2003
  • The single Phase induction motor is used to small size electronic appliance by production cost of a low-cost. But, it is low efficiency large torque ripple and impossible speed control. However we can change the speed if it similar to the three phase induction motor. And we studied about the two phase induction motor that torque ripple is smaller. So, in this paper the dynamic characteristics of the two phase induction motor are described and compared with the cage-type single phase induction motor to find the characteristics of the torque ripple and current, speed through the time-stepped finite element method.

  • PDF

The Analysis of Noise Characteristics of Synchronous Reluctance Motor in the two-phase conduction operation (2상 통전 방식에 따른 동기 리럭턴스 모터의 소음 특성 분석)

  • 오재윤;정달호;김정철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.167-170
    • /
    • 1999
  • In this paper, we operate Synchronous Reluctance Motor(SynRM) using the two-phase conduction method. Acually SynRM is operated by the sinusoidal PWM method but in home-appliance there is many restrictions of making the motor such as the method of winding, the shape of rotor etc. Therefore it is possible that there is little difference of performance between the two-phase conduction method and the sinusoidal PWM method. In this paper the characteristics of motor noise will be analyzed especially in the case of using the two-phase conduction method by experiment results.

  • PDF

Performances of Current-Waveform Modulated Single-Phase Induction Machine (전류파형을 변조한 단상유도전동기구의 특성에 관한 연구)

  • 황영문;김철우;박용규
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 1975
  • A single-phase induction motor with it's stator winding splitted into two series windings, of which the terminals of one winding is switched pulsationally by a thyristor type ON-OFF device so that the motor may operate as a pulsational shaded-pole motor, can modulate current waveforms of it's two series windings. In view of current waveform modulation method, a single-phase single-winding motor operates as a two-phase induction motor with asymmetrical axis windings where the starting torque can be obtained effectively without an auxiliary capacitor attached and it's running speed controlled by shifting phase between current waveforms differently. Equivalent circuit for analysis is modified from a double revolving field equivalent circuit of a single-phase induction motor with asymmetrical windings whose angle is 45.deg.C elet. degrees. Analysis and test results show that ON-OFF action of the pulsational shaded-pole winding has the same effect of a series capacitor, and then at heavy loads this motor operates with a small amonut of the input current than that having the fixed shaded-pole winding.

  • PDF

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

Optimal Switching Position of Two-Phase Brushless DC Motor with the Consideration of Vibration (진동을 고려한 2상 BLDC 모터의 최적 스위칭 위치)

  • 정중기;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.465-470
    • /
    • 2001
  • Two-phase BLDC(brushless DC) motor has larger torque ripple than three-phase BLDC motor because of its unique skeleton-type structure. An electronic switching mechanism to change the current-direction of the BLDC motor can be a source of vibration as well as unbalanced rotor weight. A proper switching timing which makes less vibrations was considered by changing the position of sensing element around the center of rotation. Also, the current of the motor was measured for the calculation of the motor efficiency. From the vibration test results and with the consideration of the motor efficiency, an optimal switching position of the Hall sensor was found.

  • PDF