• 제목/요약/키워드: Two-phase flow regime

검색결과 72건 처리시간 0.028초

2상 횡유동을 받는 튜브군의 유체탄성 불안정성 (Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow)

  • 김범식;장효환
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1948-1966
    • /
    • 1991
  • 본 연구에서는 2상 횡유동을 받는 튜브군의 진동 메카니즘을 규명하기 위한 실험계획의 일환으로 실시된 실험으로부터 튜브군의 유체탄성 불안정성 상수에 관해 고찰하였다. 실험은 먼저 p/d=1.47 및 1.32 튜브군에 대해 수행되었는데, 이들 튜브 군의 결과는 참고문헌에 발표하였다. 본 논문은 후속 실험으로 수행된 p/d=1.22인 튜브군을 사용하여 유체탄성 불안정성 상수를 고찰한 참고문헌의 후속논문이다. 실 험은 액체상태로 부터 99% 보이드율(void fraction)까지 변화된 2상 유동에서 튜브가 유체탄성 불안정성 상태에 도달할 때까지 점진적으로 증가하였다.실험결과는 p/d= 1.32 alc 1.47 튜브군의 유체탄성 불안정성 결과들과 종합. 비교되었다.

순환유동층 소각로의 수력학적 특성에 관한 연구 (Hydrodynamic Characteristics of Circulating Fluidized Bed Incinerator)

  • 변영철;박선호;황정호;김세원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.173-182
    • /
    • 1999
  • Internally Circulating Fluidized Bed Combustor(ICFBC) has been used for the incineration of waste sewage sludge. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of ICFBC. A lab-scale riser(l/5 scale of pilot plant) is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity, particle diameter and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Our flow regime during experiments mainly belongs to the onset of turbulent regime(for d_{p}:300{\mu}m) and fast fluidization regime(for d_{p}:100{\mu}m). Superficial velocities of each regime are well agreed with results obtained by other researches. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. As the particle size decreases, solid holdup along the riser is more uniformly distributed. To prove these experimental results, numerical calculations are being performed.

  • PDF

근사수평 이상반류성층유동에서의 플러딩 및 히스테리시스효과 (Flooding and Hysteresis Effects in Nearly - Horizontal Two - Phase Countercurrent Stratified Flow)

  • 이상천
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.232-239
    • /
    • 1985
  • 근사수평 이상반류유동에서의 플러딩천이에 대한 실험을 수행하였으며 이것을 바탕으로 반류유 동도(flow-regime map)를 완성하였다. 또 플러딩천이에 대한 응축의 영향을 고찰하였는데 플러 딩이 액체입구에서 야기될 때 플러딩 속도는 응축량을 고려한 유효증기량으로 표시되며 이 경우 반드시 히스테리시스효과를 동반하게 된다. 이 효과는 응축에 기인하는 것으로 그 메카니즘을 구명하였다. 또 전달액체유량이 영이 될 때의 임계증기속도는 액체분출유량이나 액체서브쿠울 링의 정도에 무관하며 본 연구에서 사용한 관의 경우, 수정 Wallis 변수로 1.74로 나타났다.

Deformation Behaviour of Ti-8Ta-3Nb During Hot Forging

  • Lee Kyung Won;Ban Jae Sam;Kim Sun Jin;Cho Kyu Zong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.13-18
    • /
    • 2006
  • Ti-8Ta-3Nb, as a new biomaterial, was prepared by cast and swaging process. Their deformation behavior of Ti-8Ta-3Nb alloy has been characterized on the basis of its flow stress variation obtained from the true strain rate compression testing in the temperature of $700-900^{\circ}C$ and strain rate of $0.001-10\;s^{-1}$. At the strain rates lower than $0.1\;s^{-1}$ and the all temperature ranges which consist of two phase ${\alpha}+{\beta}$ as well as single ${\beta}$ phase fields, the flow curves show a small degree of flow softening behavior. In contrast, the shapes of the flow curves at other strain rates indicate unstable behavior. The shapes of the flow curves were similar in both as-cast and swaged specimen as well as in both ${\alpha}+{\beta}$ phase and ${\beta}$ phase. The flow stress data did not obey the kinetic rate equation over the entire regime of testing but a good fit has been obtained in the intermediate range of temperatures ($750-850^{\circ}C$). In this range, a stress exponent value of about 7.7 in as-cast specimens and about 6.2 in swaged specimens with an apparent activation energy of about 300 kJ/mol and about 206 kJ/mol respectively have been evaluated.

원형 미소 채널 내 드라이 플러그류의 유동 영역 한계와 압력 강하에 관한 실험적 연구 (An Experimental Study on Regime Limit and Pressure Drop of Dry-plug Flow in Round Mini-channels)

  • 이치영;이상용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2583-2588
    • /
    • 2008
  • In the present experimental study, the regime limit and pressure drop of dry-plug flow (dry wall condition at the gas portions of plug flow) in round mini-channels has been investigated. The air-water mixture was flowed through the round mini-channels made of Teflon, where the tube diameters ranged from 1.26 to 2.06 mm. For the present experimental range, with decreasing of the tube diameter, the transition between the plug and slug flows (wet and dry) happened at the higher gas superficial velocity region, which were in good agreement with the previous flow pattern maps tested. On the other hand, the transition between the wet- and dry-plug flows was little affected by the change of the tube diameter. In the pressure drop of dry-plug flows, among the correlations tested, the Lee and Lee's (2008) correlation best fitted the measured pressure drop data within the mean deviation of 10% for the present experimental range.

  • PDF

금속의 펨토초 어블레이션의 수치해석 (Numerical analysis of fs laser ablation of metals)

  • 오부국;김동식;김재구;이제훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.657-658
    • /
    • 2006
  • Although there are many numerical models to simulate fs laser ablation of metals, no model can analyze the ablation phenomena over a wide range of fluence. In this work, a numerical code for simulating the fs laser ablation phenomena of metals has been developed. The two temperature model is employed to predict the ablation rate and the crater shape of metals using phase explosion mechanism in the relatively high fluence regime. Also, the ultrashort thermoelastic model is used for the low fluence regime to account for spallation of the sample by high strain rate. It has been demonstrated that the thermoelastic stress generated within the sample can exceed the yield stress of the material even near the threshold fluence. Numerical computation results are compared with the experiment for Cu and Ni and show good agreement. Discussions are made on the hydrodynamic model considering phase change and hydrodynamic flow.

  • PDF

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

Liquid phase hydrogen peroxide decomposition for micro-propulsion applications

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.21-35
    • /
    • 2017
  • Hydrogen peroxide is being considered as a monopropellant in micropropulsion systems for the next generation of miniaturized satellites ('nanosats') due to its high energy density, modest specific impulse and green characteristics. Efforts at the University of Vermont have focused on the development of a MEMS-based microthruster that uses a novel slug flow monopropellant injection scheme to generate thrust and impulse-bits commensurate with the intended micropropulsion application. The present study is a computational effort to investigate the initial decomposition of the monopropellant as it enters the catalytic chamber, and to compare the impact of the monopropellant injection scheme on decomposition performance. Two-dimensional numerical studies of the monopropellant in microchannel geometries have been developed and used to characterize the performance of the monopropellant before vaporization occurs. The results of these studies show that monopropellant in the lamellar flow regime, which lacks a non-diffusive mixing mechanism, does not decompose at a rate that is suitable for the microthruster dimensions. In contrast, monopropellant in the slug flow regime decomposes 57% faster than lamellar flow for a given length, indicating that the monopropellant injection scheme has potential benefits for the performance of the microthruster.

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

가스 배관내 가스 컨덴세이트의 발생 시작점 및 발생량 예측을 위한 통계 모델 연구 (A Statistical Model for Predicting Incipient Point and Quantity of Gas Condensate in Gas Pipelines)

  • 장승용
    • 한국가스학회지
    • /
    • 제10권4호
    • /
    • pp.1-5
    • /
    • 2006
  • 가스 소비의 급증으로 천연가스의 수송수단인 배관의 역할이 증가하고 있다. 일반적으로 배관으로 가스를 수송할 경우, 주로 컨덴세이트 형성에 기인하는 일부 액체가 관내에 형성되어 가스 산업현장에서 복잡한 조업 상의 문제점을 발생시킨다. 그러므로, 가스 컨덴세이트의 존재가 조업 효율에 미치는 영향을 예측할 수 있는 적절한 방법이 필요하다. 본 연구에서는 통합된 단상/2상 유동개념을 사용하여 가스 컨덴세이트의 발생 시작점과 그 발생량의 영향이 출구 압력에 미치는 영향을 분석할 수 있는 통계 모델을 개발하였다. 또한 컨덴세이트 발생 시작점 이후, 2상 유동지역에서 유동형태의 변화가 출구 압력에 미치는 영향도 분석되었다.

  • PDF