• 제목/요약/키워드: Two-phase Flow Model

검색결과 567건 처리시간 0.03초

마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가 (An assessment of friction factor and viscosity models for predicting the refrigerant characteristics in adiabatic capillary tubes)

  • 손기동;박상구;정지환;김윤수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.47-54
    • /
    • 2008
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses, and flashing, simultaneously. In this paper flow characteristics of adiabatic capillary tubes with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models were simulated. The predicted pressure distribution, mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing the suitable correlations of friction factor and two-phase viscosity model, and two-phase frictional multiplier.

  • PDF

Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow

  • Zheng, Chuanzhang;Yan, Gongxing;Khadimallah, Mohamed Amiine;Nouri, Alireza Zamani;Behshad, Amir
    • Advances in concrete construction
    • /
    • 제13권5호
    • /
    • pp.361-365
    • /
    • 2022
  • The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure two-fluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced.

증발기 내 이상유동의 균열 분배를 위한 헤더 형상의 최적화 (Optimum Header Design for the Uniform Distribution of Two Phase Flow in the Evaporator)

  • 최치웅;김무환;조남수;이장석;이장호
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.780-787
    • /
    • 2006
  • Several types of different header designs are numerically studied to have uniform distribution of two phase flow in the evaporator header having multi-channels. The different geometries include the inlet tube position into the header and the width of header. In the numerical calculation, two types of two-phase model such as homogeneous model and VOF(Volume Of Fluid) model are employed. In this study, the mal-distribution number, $M_d$, is newly defined to evaluate the averaged level of the flow distribution in the whole passes of the evaporator. As results, two phase flow in the header can be visualized using post-processing of numerical results. Furthermore, the optimum position of the inlet tube into the header and the width of header can be proposed for the better distribution of refrigerant(R-134a) flow.

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

2상 극저온 열전달 과정 계산에서의 CFD 응용 (Application of CFD to tile Calculation of 2 Phase Cryogenic Heat Transfer Processes)

  • 유걸;악해파;정모;배철호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.141-147
    • /
    • 2011
  • A two-phase numerical model for plate-fin heat exchangers with plain fins and wave fins is studied incorporating the thermodynamic properties and the characteristics of fluid flow. The numerical simulations for the two fins in cryogenic conditions are earned out by employing a homogenous two-phase flow model with the CFD code ANSYS CFX. The heat transfer coefficients and the friction factor for nitrogen saturated vapor condensation process inside two types of plate fin heat exchanger are evaluated including the effects of saturation temperature (pressure), mass flow rate and inlet vapor quantity. The convective heat transfer coefficients and friction factors will be used for design of plate-fin type heat exchangers operating under cryogenic conditions.

  • PDF

알루미늄재료의 Rheo-forming을 위한 성형공정해석 (Process Analysis for Rheo-Forming of Aluminum Materials)

  • 서판기;정영진;정경원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.124-128
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum ahoy has been studied Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The unposed mathematical model is applied to the die shape of the two type. To calculate the velocities and temperature fields during rheology forming process, the each governing equation correspondent to the liquid and solid region are adapted. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity.

  • PDF

자동차용 열교환기 냉매의 압력 강하 특성에 관한 연구 (A Study on Pressure Drop Characteristics of Refrigerant in Heat Exchanger for Automobile)

  • 임태우;박종운
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.119-125
    • /
    • 2003
  • An experiment study on pressure drop was carried out for both an adiabatic and a diabatic two-phase flow with pure refrigerants R134a and Rl23 and their mixtures as test fluids in a uniformly heated horizontal tube. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. The measured frictional pressure drop was compared to a few available correlations. Homogeneous model considerally underpredicted the present data for mixture as well as pure component in the entire mass velocity ranges employed in the present study, while Friedel correlation was found to satisfactorily correlate the frictional pressure drop data as compared to other correlation.

AVERAGE LIQUID LEVEL AND PRESSURE DROP FOR COUNTERCURRENT STRATIFIED TWO-PHASE FLOW

  • Kim, Yang-Seok;Yu, Seon-Oh;Chun, Moon-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.301-306
    • /
    • 1996
  • To predict the average liquid level under the condition of the countercurrent stratified two-phase flow in a pipe, an analytical model has been suggested. This is made by introducing the interfacial level gradient into the liquid-phase and the gas-phase momentum equations. The analytical method for the gas-phase pressure drop calculation with f$_i$ $\neq$ f$_G$ has also been described using the liquid level prediction model developed in the present study.

  • PDF

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.