• Title/Summary/Keyword: Two-mode Networks

Search Result 130, Processing Time 0.026 seconds

Joint Mode Selection and Resource Allocation for Mobile Relay-Aided Device-to-Device Communication

  • Tang, Rui;Zhao, Jihong;Qu, Hua;Zhu, Zhengcang;Zhang, Yanpeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.950-975
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying cellular networks is a promising add-on component for future radio communication systems. It provides more access opportunities for local device pairs and enhances system throughput (ST), especially when mobile relays (MR) are further enabled to facilitate D2D links when the channel condition of their desired links is unfavorable. However, mutual interference is inevitable due to spectral reuse, and moreover, selecting a suitable transmission mode to benefit the correlated resource allocation (RA) is another difficult problem. We aim to optimize ST of the hybrid system via joint consideration of mode selection (MS) and RA, which includes admission control (AC), power control (PC), channel assignment (CA) and relay selection (RS). However, the original problem is generally NP-hard; therefore, we decompose it into two parts where a hierarchical structure exists: (i) PC is mode-dependent, but its optimality can be perfectly addressed for any given mode with additional AC design to achieve individual quality-of-service requirements. (ii) Based on that optimality, the joint design of MS, CA and RS can be viewed from the graph perspective and transferred into the maximum weighted independent set problem, which is then approximated by our greedy algorithm in polynomial-time. Thanks to the numerical results, we elucidate the efficacy of our mechanism and observe a resulting gain in MR-aided D2D communication.

Performance Analysis of Error Control Techniques Using Forward Error Correction in B-ISDN (B-ISDN에서 Forward Error Correction을 이용한 오류제어 기법의 성능분석)

  • 임효택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1372-1382
    • /
    • 1999
  • The major source of errors in high-speed networks such as Broadband ISDN(B-lSDN) is buffer overflow during congested conditions. These congestion errors are the dominant sources of errors in 1high-speed networks and result in cell losses. Conventional communication protocols use error detection and retransmission to deal with lost packets and transmission errors. However, these conventional ARQ(Automatic Repeat Request) methods are not suitable for the high-speed networks since the transmission delay due to retransmissions becomes significantly large. As an alternative, we have presented a method to recover consecutive cell losses using forward error correction(FEC) in ATM(Asynchronous Transfer Mode)networks to reduce the problem. The performance estimation based on the cell discard process model has showed our method can reduce the cell loss rate substantially. Also, the performance estimations in ATM networks by interleaving and IP multicast service are discussed.

  • PDF

Link Prediction in Bipartite Network Using Composite Similarities

  • Bijay Gaudel;Deepanjal Shrestha;Niosh Basnet;Neesha Rajkarnikar;Seung Ryul Jeong;Donghai Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2030-2052
    • /
    • 2023
  • Analysis of a bipartite (two-mode) network is a significant research area to understand the formation of social communities, economic systems, drug side effect topology, etc. in complex information systems. Most of the previous works talk about a projection-based model or latent feature model, which predicts the link based on singular similarity. The projection-based models suffer from the loss of structural information in the projected network and the latent feature is hardly present. This work proposes a novel method for link prediction in the bipartite network based on an ensemble of composite similarities, overcoming the issues of model-based and latent feature models. The proposed method analyzes the structure, neighborhood nodes as well as latent attributes between the nodes to predict the link in the network. To illustrate the proposed method, experiments are performed with five real-world data sets and compared with various state-of-art link prediction methods and it is inferred that this method outperforms with ~3% to ~9% higher using area under the precision-recall curve (AUC-PR) measure. This work holds great significance in the study of biological networks, e-commerce networks, complex web-based systems, networks of drug binding, enzyme protein, and other related networks in understanding the formation of such complex networks. Further, this study helps in link prediction and its usability for different purposes ranging from building intelligent systems to providing services in big data and web-based systems.

Effect of Fiber Dispersion and Self-phase Modulation in Multi-channel Subcarrier Multiplexed Optical Signal Transmission

  • Kim, Kyoung-Soo;Jeong, Ji-Chai;Lee, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • We investigated the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) in multi-channel subcarrier multiplexed (SCM) optical transmission systems. We theoretically analyzed the transmission characteristics of the SCM signals with the effect of SPM and chromatic dispersion in a single-mode optical fiber by numerical simulations based on the nonlinear Schrodinger equation. The numerical simulation results revealed that the effect of fiber dispersion and SPM could occur independently between subcarrier channels in two-channel SCM systems for small optical modulation index (OMI) and large channel spacing. However, for large OMI, small channel spacing, and large fiber launching power, we found a performance degradation of the two-channel system compared to that of a single-channel system. These parameters are therefore important for the optimization of multi-channel SCM systems applicable to radio over fiber networks.

A design of Key Exchange Protocol for User Centered Home Network (사용자 중심의 홈네트워크를 위한 키 교환 프로토콜 설계)

  • 정민아
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.654-660
    • /
    • 2004
  • In this paper, we define that pervasive home network, which provides necessary services for user properties and removes distractions to improve the quality of human life. So, user can enjoy home network technology including devices and softwares at any place with no knowledge of networked home, devices, and softwares. In this home network, a mobile agent, called LAFA, can migrate to unfamiliar home network and control the necessary devices. For this environment, we design security management module for authenticating user and home server that access some other home networks, and for protecting text, multimedia data, and mobile agent that are transferred between home networks. The security management module is composed of a key exchange management module and an access control management module, for key exchange management module, we propose a key exchange protocol, which provides multimode of authentication mode and key exchange mode. One of these two modes is selected according to the data type.

Energy Efficient Sleep Scheme for Downlink Elastic Traffic in Wireless Networks (무선 네트워크에서 하향 링크 탄력적 트래픽을 위한 에너지 효율적인 휴면 기법)

  • Lee, Jong-Wook;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.329-337
    • /
    • 2009
  • In wireless networks, maximizing throughput and minimizing energy consumption are two conflicting objectives. For elastic traffic, it is important to enhance the throughput since it directly affects the quality-of-service(QoS) of users. At the same time, the energy consumption should be minimized in order to prolong the battery lifetime of the mobile station. In this paper, we propose an energy efficient sleep scheme that considers throughput and energy saving simultaneously. The proposed scheme is designed for an efficient tradeoff between throughput and energy saving when receiving elastic traffic. Through extensive simulations, we compare the proposed scheme with the conventional scheme. Our proposed scheme outperforms the conventional one in terms of utility, i.e., user satisfaction, which is defined as inversely proportional to the weighted multiplication of service completion time and energy consumption.

Energy Efficiency Maximization for Energy Harvesting Bidirectional Cooperative Sensor Networks with AF Mode

  • Xu, Siyang;Song, Xin;Xia, Lin;Xie, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2686-2708
    • /
    • 2020
  • This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.

A study on improvement of policing perfomance by usage parameter control in asynchronous transfer mode networks (ATM망에서 사용자 변수 제어에 의한 감시 성능 개선에 관한 연구)

  • 한길성;오창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1480-1489
    • /
    • 1996
  • In ATM networks there are two methods in traffic control as schemes advancing the quality of service. One is reactive control after congestion and the other which is generally recommended, is preventive control before congestion, including connection admission control on call leel and usage parameter control, network parameter control, priority control and congestion control on cell level. In particular, usage parameter control is required for restricting the peak cell rate of bursy tracffic to the parameter negotiated at call set-up phase since the peak cell rate significantly influences the network quality of service. The scheme for progressing quality of service by usage parameter control is themethod using VSA(Virtual Scheduling Algorlithm) recommended ITU-T. The method using VSSA(Virtual Scheduling Suggested Algorlithm) in this paper is suggested by considering cell delay variation and token rate of leaky bucket, compared VSA and VSANT(Virtual Scheduling Algolithm with No Tolerance) with VSSA which polices violated cell probability of conformed peak cell rate and intentionally excessive peak cell rate. VSSA method using IPP(Interruped Poisson Process) model of input traffic source showed more quality of service than VSA and VSANT methods as usage parameter control because the suggested method reduced the violated cell probability of contformed peak cell rate and intentionally excessive peak cell rate.

  • PDF

Power Allocation in Heterogeneous Networks: Limited Spectrum-Sensing Ability and Combined Protection

  • Ma, Yuehuai;Xu, Youyun;Zhang, Dongmei
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • In this paper, we investigate the problem of power allocation in a heterogeneous network that is composed of a pair of cognitive users (CUs) and an infrastructure-based primary network. Since CUs have only limited effective spectrum-sensing ability and primary users (PUs) are not active all the time in all locations and licensed bands, we set up a new multi-area model to characterize the heterogeneous network. A novel combined interference-avoidance policy corresponding to different PU-appearance situations is introduced to protect the primary network from unacceptable disturbance and to increase the spectrum secondary-reuse efficiency. We use dual decomposition to transform the original power allocation problem into a two-layer optimization problem. We propose a low-complexity joint power-optimizing method to maximize the transmission rate between CUs, taking into account both the individual power-transmission constraints and the combined interference power constraint of the PUs. Numerical results show that for various values of the system parameters, the proposed joint optimization method with combined PU protection is significantly better than the opportunistic spectrum access mode and other heuristic approaches.

Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data

  • Dang, Hung V.;Raza, Mohsin;Tran-Ngoc, H.;Bui-Tien, T.;Nguyen, Huan X.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.495-508
    • /
    • 2021
  • This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.