• 제목/요약/키워드: Two-layer fluid

Search Result 221, Processing Time 0.025 seconds

A Study of Heat Transfer during Freezing Process of Water in a Vertical Cylinder - Comparison of thermal storage performance on the working fluid direction - (수직원통형 축열조내 물의 응고과정시 열전달에 관한 실험적연구 - 작동유체의 유동방향에 따른 열저장성능 비교 -)

  • Heo, K.;Kim, Y.K.;Kim, Y.J.;Kim, J.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.77-90
    • /
    • 1995
  • An effective heat transfer during freezing process was proposed in the vertical cylinder to improve the effectiveness of the heat storage. Vertical cylinder was filled with pure water in order to investigate ice-shape, temperature distribution of the liquid, temperature distribution of the cylinder tube wall, total heat storage per unit mass in the test section under the two experimental conditions; inlet temperature of working fluid is constant($-10^{\circ}C$) and inlet direction of working fluid is either upward flow or downward. Both the mean temperature of the liquid and temperature difference of cylinder tube wall in the upward were lower than those in the downward. In case that the initial temperature of water was $7^{\circ}C$ and $4^{\circ}C$, the shape of ice layer in the upward was more uniform than that in the downward. In case of $1^{\circ}C$, the shape of ice layer is formed by inlet direction of working fluid. Finally, time-varying total heat energy stored in the water in the upward was higher than that in the downward.

  • PDF

An experimental study on the characteristics of transverse jet into a supersonic flow field (초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구)

  • 박종호;김경련;신필권;박순종;길경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.

Measurement of Cross-sectional Temperature Distribution in Micro-scale Gap Fluid Using LIF Technique in Combination with CLSM (LIF 및 CLSM을 결합한 미소 간극 내 유체의 단면 온도 분포 측정 기법)

  • Jeong, Dong-Woon;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.834-841
    • /
    • 2006
  • In the present wort the Laser-induced Fluorescence (LIF) technique and Confocal Laser Scanning Microscopy (CLSM) have been combined to measure the temperature distribution across a micro-scale liquid layer as a direct and non-invasive method. Only the fluorescent light emitted from a very thin volume around a focal plane can be selectively detected, and it enables us to measure the liquid temperatures even at the close vicinity of the walls. As an experimental verification, a test section consists of two flat plates (for heating and cooling, respectively) separated by about 240 microns was made, and the methanol mixed with a temperature-sensitive dye, Rhodamine B, was filled in the gap between them. The measured temperature distribution across the gap showed good linearity, which is a typical characteristic of conduction heat transfer through a thin liquid layer. In result, the CLSM-LIF technique proposed in the present study was found to be a promising method to measure the local temperatures in the liquid flow field in microfluidic devices.

Heat transfer in the perturbed boundary layer by cylinder and secondary injection in supersonic flow (초음속유동장 내에 돌출된 실린더와 2차분사 홀 주변에서의 열전달 현상 연구)

  • Yi, Jong-Ju;Yu, Man-Sun;Song, Ji-Woon;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.276-280
    • /
    • 2007
  • In this paper, heat transfer changes due to the shock/boundary layer interaction were investigated on surfaces where protruding bodies such as a cylinder and a secondary jet are mounted. With an infra-red thermography, surface temperature was measured and the measured data was used to obtain the convective heat transfer. Heat transfer phenomena around these two solid and fluid bodies were appeared to be very comparable each other. The inclination of a cylinder and the jet injection ratio were the important factors for the change of heat transfer on the effective surfaces.

  • PDF

Photoprotective Effect of Lotus (Nelumbo nucifera Gaertn.) Seed Tea against UVB Irradiation

  • Kim, Su-Yeon;Moon, Gap-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.162-168
    • /
    • 2015
  • Lotus (Nelumbo nucifera Gaertn.) seed is widely used as a traditional medicine in countries of Asia. Among many functions of the lotus seed, one interesting activity is its skin protection from the sunlight and scar. In this study, we focused on the skin protective property of lotus seed tea against ultraviolet B (UVB) irradiation. Two groups of a hairless mouse model, water as control (water group) and lotus seed tea (LST group), were administrated a fluid drink water for six months. After 6 month of administration, UVB exposure was carried out to both groups for another 3 months. During and after the administration, the skin moisture content and the morphological and histopathological analyses through biopsy were carried out. Prior to UVB irradiation, no significant difference was discovered in the skin moisture content for the water group and LST group (P<0.05). However, drastic changes were observed after the UVB treatment. The LST group showed a clear evidence of skin protection compared to the control group (P<0.05). The moisture content, epidermal and horny layer thickness, and protein carbonyl values all revealed that the intake of the lotus seed tea enhanced protection against UVB exposure. As a result, the long-term intake of the lotus seed tea showed the effect of preventing loss of skin moisture, mitigating the formation of abnormal keratinocytes, and contributing to protein oxidation inhibition.

Magnetic Anisotropy in High $T_c\;Y_1Ba_2Cu_3O_{7-y}$ Superconductor (고온초전도체 $Y_1Ba_2Cu_3O_{7-y}$의 자기이방성)

  • Kim, Mun-Seok;Yu, Seong-Cho;Im, U-Yeong;Baek, Jong-Seong
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.228-232
    • /
    • 1992
  • Magnetic properties of grain aligned high $T_c\;Y_1Ba_2Cu_3O_{7-y}$ superconductor are inverstigated. Grain-aligned superconductors have magnetic anisotropy in the Cu-O layer like single crystals. The lower critical field $H_{c1},$ measured at the temperature range of 2 K up to 77 K, is found to be decreasing linearly as temperature goes up. Moreover, it decreaes more rapidly when the Cu-O layer is perpendicular to the external magnetic field. The temperature dependence of the magnetic susceptibility shows that the value of magnetic susceptibility, $4{\pi}\;X,$ is close to -1 at low temperature. The intra grain critical current density $J_c,$ obtained from the Bean's critical state model, is found to be comparable to that of single crystal superconductors.

  • PDF

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

Simultaneous Measurement of Wind Pressures and Displacements on Tall Building (풍압과 변위의 동시계측을 통한 고층건물의 공력 특성 평가)

  • Kim, Yong Chul;Lo, Yuan-Lung;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Vortex-induced vibration and instability vibration of tall buildings are very important fluid-structure interaction phenomenon, and many fundamental questions concerning the influence of body movement on the unsteady aerodynamic force remain unanswered. For tall buildings, there are two experimental methods to investigate the characteristics of unsteady aerodynamic forces, one is forced vibration method and the other is free vibration method. In the present paper, a free vibration method was used to investigate the unsteady aerodynamic force on tall building whose aspect ratio is 9 under boundary layer simulating city area. Wind pressures on surfaces and tip displacements were measured simultaneously, and the characteristics of tip displacements and generalized forces were discussed. It was found that variation of across-wind displacements showed different trend between the case when wind speed increases and wind speed decreases, and the fluctuating generalize forces in across-wind direction of vibrating model are larger than that of static model near the resonant wind speed and approach to the static value. And for higher wind speed range, there were two peaks in across-wind power spectra of generalize forces of vibrating model, which means that two frequency components are predominant in unsteady aerodynamic forces.

Analysis of the Adsorbed Plasma Proteins in the Moving Actuator type Total Artificial Heart

  • Gyu Ha Ryu;Jon
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.307-314
    • /
    • 1993
  • Plasma protein adsorption is the first event in the blood-material interaction and influenc- es subsequent platelet adhesion towards thlㅈombus formation. Thiㅈomboembolic events are strongly influenced by surface characteristics of materials and fluid dynamics inside the blood pump. In vitro flow visualizaion and an amimal experiment with the moving actuator type TAH were Performed in order to investigate fluid dynamic effects on the protein adsorption. The diffel'encl level, j of shear rate inside the ventricle Lvere determined by consid- ering the direction of the major opening of four healt valves in the implanted TAH and the visualized flow patterns as well. Each ventricle of the explanted TAH was sectionalized into 12 segments according to the shear rate level. The adsorbed protein on each segment was quantified using the ELISA method after soaking in 2% (wye)SDS/PBS for two days. Adsorbed protein layer thicknesses Itvere measured by the Immunogotd method under TEM. The SEM observation show that right ventricle (RV) , immobilized with albumin, displayed different degrees of platelet adhesion on each segment, whereas the left ventricle (LV), grafted by PEO-sulronate, indicated nearly , iame platelet adhesion behavior, regardless of shear rates. The surface concentrations of adsorbed proteins in the low shear rate region are hlghel'than those in the high region, which was confirmed statistically. A modified adsorption model of plasma protein onto polyurethane surface was suggested by considering the effect of the fluid dynamic characteristics.

  • PDF

Analysis of Delay Performance for QoS Support in Wireless Networks (무선 네트워크에서 Qos 보장을 위한 딜레이 성능 분석)

  • Kim Jenog Geun;Cho Jin Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10B
    • /
    • pp.831-840
    • /
    • 2004
  • Providing quality of service (QoS) guarantees over wireless link requires thorough understanding and quantification of the interactions among the traffic source, the wireless channel, and the underlying error control mechanisms. In this paper, we account for such interactions in a network-layer model that we use to investigate the delay performance of a wireless channel. We consider a single ON/OFF traffic stream transported over a wireless link. The capacity of this link fluctuates according to a fluid version of Gilbert-Elliot's model. We derive the packet delay distribution via two different approaches: uniformization and Laplace transform. Numerical aspects of both approaches are compared. The delay distribution is further used to quantify the wireless effective bandwidth under a given delay guarantee. Numerical results and simulations are used to verify the adequacy of our analysis and to study the impact of error control and bandwidth allocation on the packet delay performance. Wireless networks, QoS, delay distribution, fluid analysis.