• Title/Summary/Keyword: Two-lane Method

Search Result 119, Processing Time 0.022 seconds

A Study on Operation Methodology of A Signalized Intersection Based on Optimization of Lane-Uses (차로배정 최적화를 고려한 신호교차로 운영방안에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.125-133
    • /
    • 2013
  • PURPOSES : The purpose of this study is to propose delay-minimizing operation methodology of a signalized intersection based upon optimization of lane-uses on approaching lanes for an intersection. METHODS : For the optimization model of lane-uses, a set of constraints are set up to ensure feasibility and safety of the lane-uses, traffic flow, and signal settings. Minimization of demand to saturation flow ratio of a dual-ring signal control system is introduced to the objective function for delay minimization and effective signal operation. Using the optimized lane-uses, signal timings are optimized by delay-based model of TRANSYT-7F. RESULTS : It was found that the proposed objective function is great relation with delay time for an intersection. From the experimental results, the method was approved to be effective in reducing delay time. Especially, cases for two left-turn lanes reduced greater delays than those for a left turn lane. It is noticed that the cases for different traffic volume by approach reduced greater delays than those for the same traffic volume by approach. CONCLUSIONS : It was concluded that the objective function is proper for lane-uses optimizing model and the operation method is effective in reducing delay time for signalized intersections.

Lane Detection Using Gaussian Function Based RANSAC (가우시안 함수기반 RANSAC을 이용한 차선검출 기법)

  • Choi, Yeongyu;Seo, Eunyoung;Suk, Soo-Young;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.195-204
    • /
    • 2018
  • Lane keeping assist and departure prevention system are the key functions of ADAS. In this paper, we propose lane detection method which uses Gaussian function based RANSAC. The proposed method consists mainly of IPM (inverse perspective mapping), Canny edge detector, and Gaussian function based RANSAC (Random Sample Consensus). The RANSAC uses Gaussian function to extract the parameters of straight or curved lane. The proposed RANSAC is different from the conventional one, in the following two aspects. One is the selection of sample with different probability depending on the distance between sample and camera. Another is the inlier sample score that assigns higher weights to samples near to camera. Through simulations, we show that the proposed method can achieve good performance in various of environments.

An Efficient Method for Real-Time Broken Lane Tracking Using PHT and Least-Square Method (PHT와 최소자승법을 이용한 효율적인 실시간 점선차선 추적)

  • Xu, Sudan;Lee, Chang-Woo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.619-623
    • /
    • 2008
  • A lane detection system is one of the major components of intelligent vehicle systems. Difficulties in lane detection mainly come from not only various weather conditions but also a variety of special environment. This paper describes a simple and stable method for the broken lane tracking in various environments. Probabilistic Hough Transform (PHT) and the Least-square method (LSM) are used to track and correct the lane orientation. For the efficiency of the proposed method, two regions of interest (ROIs) are placed in the lower part of each image, where lane marking areas usually appear with less intervention in our system view. By testing in both a set of static images and video sequences, the experiments showed that the proposed approach yielded robust and reliable results.

Vehicle Localization Method for Lateral Position within Lane Based on Vision and HD Map (비전 및 HD Map 기반 차로 내 차량 정밀측위 기법)

  • Woo, Rinara;Seo, Dae-Wha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.186-201
    • /
    • 2021
  • As autonomous driving technology advances, the accuracy of the vehicle position is important for recognizing the environments around driving. Map-matching localization techniques based on high definition (HD) maps have been studied to improve localization accuracy. Because conventional map-matching techniques estimate the vehicle position based on an HD map reference dataset representing the center of the lane, the estimated position does not reflect the deviation of the lateral distance within the lane. Therefore, this paper proposes a localization system based on the reference lateral position dataset extracted using image processing and HD maps. Image processing extracts the driving lane number using inverse perspective mapping, multi-lane detection, and yellow central lane detection. The lane departure method estimates the lateral distance within the lane. To collect the lateral position reference dataset, this approach involves two processes: (i) the link and lane node is extracted based on the lane number obtained from image processing and position from GNSS/INS, and (ii) the lateral position is matched with the extracted link and lane node. Finally, the vehicle position is estimated by matching the GNSS/INS local trajectory and the reference lateral position dataset. The performance of the proposed method was evaluated by experiments carried out on a highway environment. It was confirmed that the proposed method improves accuracy by about 1.0m compared to GNSS / INS, and improves accuracy by about 0.04m~0.21m (7~30%) for each section when compared with the existing lane-level map matching method.

Local Obstacle Avoidance of an Indoor Mobile Robot Using Lane Method and Velocity Space Command Approach (차선방법과 속도공간 명령 방식을 이용한 실내 주행 로봇의 지역 장애물 회피)

  • 김성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.105-110
    • /
    • 1999
  • This paper presents a local obstacle avoidance method for indoor mobile robots using Lane method and velocity Space Command approach. The method locates local obstacles using the information form multi-sensors, such that ultrasonic sensor array and laser scanning sensor. The method uses lane method to determine optimum collision-free heading direction of a robot. Also, it deals with the robot motion dynamics problem to reduce some vibration and guarantee fast movement as well. It yields translational and rotational velocities required to avoid the detected obstacles and to keep the robot heading direction toward goal location as close as possible. For experimental verification of the method, a mobile robot driven by two AC servo motors, equipped with 24 ultrasonic sensor array and laser scanning sensor navigates using the method through a corridor cluttered with obstacle.

  • PDF

A Lane-Departure Identification Based on Linear Regression and Symmetry of Lane-Related Parameters (차선관련 파라미터의 대칭성과 선형회귀에 기반한 차선이탈 인식)

  • Yi Un-Kun;Lee Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.435-444
    • /
    • 2005
  • This paper presents a lane-departure identification (LDI) algorithm for a traveling vehicle on a structured road. The algorithm makes up for the weak points of the former method based on EDF[1] by introducing a Lane Boundary Pixel Extractor (LBPE), the well known Hough transform, and liner regression. As a filter to extract pixels expected to be on lane boundaries, the LBPE plays an important role in enhancing the robustness of LDI. Utilizing the pixels from the LBPE the Hough transform provides the lane-related parameters composed of orientation and distance, which are used in the LDI. The proposed LDI is based on the fact the lane-related parameters of left and right lane boundaries are symmetrical as for as the optical axis of a camera mounted on a vehicle is coincident with the center of lane; as the axis deviates from the center of lane, the symmetrical property is correspondingly lessened. In addition, the LDI exploits a linear regression of the lane-related parameters of a series of successive images. It plays the key role of determining the trend of a vehicle's traveling direction and minimizing the noise effect. Except for the two lane-related parameters, the proposed algorithm does not use other information such as lane width, a curvature, time to lane crossing, and of feet between the center of a lane and the optical axis of a camera. The system performed successfully under various degrees of illumination and on various road types.

A Real-time Detection Method for the Driving Direction Points of a Low Speed Processor (저 사양 프로세서를 위한 실시간 주행 방향점 검출 기법)

  • Hong, Yeonggi;Park, Jungkil;Lee, Sungmin;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.950-956
    • /
    • 2014
  • In this paper, the real-time detection method of a DDP (Driving Direction Point) is proposed for an unmanned vehicle to safely follow the center of the road. Since the DDP is defined as a center point between two lanes, the lane is first detected using a web camera. For robust detection of the lane, the binary thresholding and the labeling methods are applied to the color camera image as image preprocessing. From the preprocessed image, the lane is detected, taking the intrinsic characteristics of the lane such as width into consideration. If both lanes are detected, the DDP can be directly obtained from the preprocessed image. However, if one lane is detected, the DDP is obtained from the inverse perspective image to guarantee reliability. To verify the proposed method, several experiments to detect the DDPs are carried out using a 4 wheeled vehicle ERP-42 with a web camera.

A Method of Lane Marker Detection Robust to Environmental Variation Using Lane Tracking (차선 추적을 이용한 환경변화에 강인한 차선 검출 방법)

  • Lee, Jihye;Yi, Kang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1396-1406
    • /
    • 2018
  • Lane detection is a key function in developing autonomous vehicle technology. In this paper, we propose a lane marker detection algorithm robust to environmental variation targeting low cost embedded computing devices. The proposed algorithm consists of two phases: initialization phase which is slow but has relatively higher accuracy; and the tracking phase which is fast and has the reliable performance in a limited condition. The initialization phase detects lane markers using a set of filters utilizing the various features of lane markers. The tracking phase uses Kalman filter to accelerate the lane marker detection processing. In a tracking phase, we measure the reliability of the detection results and switch it to initialization phase if the confidence level becomes below a threshold. By combining the initialization and tracking phases we achieved high accuracy and acceptable computing speed even under a low cost computing resources in which we cannot use the computing intensive algorithm such as deep learning approach. Experimental results show that the detection accuracy is about 95% on average and the processing speed is about 20 frames per second with Raspberry Pi 3 which is low cost device.

An Algorithm for Collecting Traffic Information by Vehicle Tracking Method from CCTV Camera Images on the Highway (고속도로변 폐쇄회로 카메라 영상에서 트래킹에 의한 교통정보수집 알고리즘)

  • Lee In Jung;Min Joan Young;Jang Young Sang
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.4
    • /
    • pp.169-179
    • /
    • 2004
  • There are many inductive loop detectors under the highways in Korea. Among the other detectors, some are image detectors. Almost all image detectors are focused one or two lane of the road and are measuring traffic information. This paper proposes to an algorithm for detecting traffic information automatically from CCTV camera images installed on the highway. The information which is counted in one lane or two contains some critical errors by occlusion frequently in case of passing larger vehicles. In this paper, we use a tracking algorithm in which the detection area include all lanes, then the traffic informations are collected from the vehicles individually using difference images in this detection area. This tracking algorithm is better than lane by lane detecting algorithm. The experiment have been conducted two different real road scenes for 20 minutes. For the experiments, the images are provided with CCTV camera which was installed at Kiheung Interchange upstream of Kyongbu highway, and video recording images at Chungkye Tunnel. For image processing, images captured by frame-grabber board 30 frames per second, 640${\times}$480 pixels resolution and 256 gray-levels to reduce the total amount of data to be Interpreted.

  • PDF

A High-performance Lane Recognition Algorithm Using Word Descriptors and A Selective Hough Transform Algorithm with Four-channel ROI (다중 ROI에서 영상 화질 표준화 및 선택적 허프 변환 알고리즘을 통한 고성능의 차선 인식 알고리즘)

  • Cho, Jae-Hyun;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.148-161
    • /
    • 2015
  • The examples that used camera in the vehicle is increasing with the growth of the automotive market, and the importance of the image processing technique is expanding. In particular, the Lane Departure Warning System (LDWS) and related technologies are under development in various fields. In this paper, in order to improve the lane recognition rate more than the conventional method, we extract a Normalized Luminance Descriptor value and a Normalized Contrast Descriptor value, and adjust image gamma values to modulate Normalized Image Quality by using the correlation between the extracted two values. Then, we apply the Hough transform using the optimized accumulator cells to the four-channel ROI. The proposed algorithm was verified in 27 frame/sec and $640{\times}480$ resolution. As a result, Lane recognition rate was higher than the average 97% in day, night, and late-night road environments. The proposed method also shows successful lane recognition in sections with curves or many lane boundary.