• Title/Summary/Keyword: Two-fluid nozzle

Search Result 150, Processing Time 0.028 seconds

A Study on Transient Characteristics of Flow Caused by Heat Addition in Supersonic Nozzle (초음속 노즐 내부 유동장의 가열에 의한 천이 특성에 대한 연구)

  • Chung, Jin-Do;Kim, Jang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.80-86
    • /
    • 2005
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with heat addition. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, start and unstart phenomena, fluctuations of specific thrust caused by thermal choking and viscous effects. We prove that the control of separation of boundary layer is the most important key problem to prevent the thermal choking.

Analysis of Water Storage Tank Flowfield using Computational Fluid Dynamics (CFD) Simulation (전산유체역학(CFD)을 이용한 저수조 내부 유동장 해석)

  • Choi, Yeon-Woo;Han, Min-Su;Song, Jun-Hyuck;Wang, Chang-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • Reservoirs, facilities to store water, are being used in several fields for their ability to hold back a large quantity of water for a long time before the water is actually used. However, at the same time, the reservoirs are considered to have a flaw: the longer they store water, the more the quality of water in these reservoirs deteriorates. Further, when the reservoirs are large, they are more likely to have dead-water regions in out-of-the way spots far from either an in-current or an ex-current canal. This study conducted a Computational Fluid Dynamic (CFD) simulation and tried to figure out the internal flow inside each of the reservoirs with different in-current canals built by the multiple hoe screw nozzle method and the drop in-current method. The drop in-current method is more frequently used. According to the analysis of the internal flow inside each reservoir with the different methods applied, we found that the reservoir with the drop in-current canal would have two rotary currents in the lower region of the reservoir and that the velocity of flow would decrease. For a reservoir with the screw nozzle method, a single rotary current occurred, and inside the reservoir, regardless of height, the current turned out to flow in a regular manner.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

An experimental study on the characteristics of transverse jet into a supersonic flow field (초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구)

  • 박종호;김경련;신필권;박순종;길경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

Effects of geometric parameters of fluidic flow meter on flow rate (Fluidic 유량계의 기하학적 변수가 유동률에 미치는 영향)

  • Park, Gyeong-Am;Yun, Gi-Yeong;Yu, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1608-1614
    • /
    • 1997
  • The fluidic flow meter detects the gas flow rate based on the principle of fluidic oscillation instead of the conventional displacement method. It has many merits: wide rangeability, no moving mechanical parts and calibration insensitive to physical properties of fluids. The width of nozzle, size of oscillation chamber, size of target, width of outlet are tested to obtain the effects of jet oscillation on the fluidic flow meter. As the width of nozzle is too wide compared with the size of target, jet oscillation is unstable. The oscillation frequency decreases as the distance between the nozzle and target increases and also as the distance between target and outlet contraction increases. Two different vortexes exist in the front and the rear regions of the target, and they affect the oscillation frequency. The outlet contraction is very important, because the feedback flow is generated by the blocking of the flow. As the width of outlet increases, the jet oscillation frequency decreases. The linearity of this tested flow meter is quite good.

Development of an Ejector System for the Engine-Bay Ventilation (엔진베이 환기용 이젝터시스템 개발)

  • Im, Juhyun;Kim, Yeongryeon;Jun, Sangin;Jang, Seongho;Lee, Sanghyo
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.30-35
    • /
    • 2014
  • This study has been conducted to develop an ejector system applied in the aircraft engine-bay ventilation system. Tandem-Ejector was selected as a component of ventilation system because it could achieve high ventilation performance in spite of motive flow with small flow rate. Tandem-Ejector is composed of a primary nozzle and two mixing ducts ($1^{st}$ mixing duct and $2^{nd}$ mixing duct). In this study, 1-D Tandem-Ejector model has been built with conservation laws and isentropic relation for 1-D ejector sizing and performance prediction. Computational Fluid Dynamics(CFD) has been conducted to investigate ejector performance and flow characteristics in the ejector. Also, Tandem-Ejector performance tests have been conducted to obtain ejector pumping performance and to investigate stand-off (gap between primary nozzle and $1^{st}$ mixing duct inlet) effect on ejector pumping performance.

Numerical Investigation of Aerodynamic Sounds by Vortex-Edge Interaction (Vortex-Edge 의 상호작용에 의한 유동소음의 수치계산)

  • Kang, Ho-Keun;Kim, Jeong-Hwan;Kim, Yu-Taek;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1915-1920
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer impinging on a rigid surface. In this paper we present a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing a conventional FDLB model, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}=23^{\circ}$ . At a stand-off distance ${\omega}$ , the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips.

  • PDF

Numerical Study of Interfacial Flows With Immersed Solids (잠겨진 물체를 포함하는 계면유동의 수치적인 연구)

  • Kim, Sung-Il;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.706-711
    • /
    • 2003
  • A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle.

  • PDF