• Title/Summary/Keyword: Two-flow nozzle

Search Result 423, Processing Time 0.029 seconds

An Experimental Study of the Trust Vector Control Using Counterflow Concept

  • C. M. Lim;Kim, H. D.;Lee, K. H.;T. Setoguchi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.192-197
    • /
    • 2004
  • Recently, fluidic thrust vectoring methods have been preferably employed to control the movement of propulsive systems due to relatively simpler design and lower cost than mechanical thrust vectoring methods. For An application of the thrust vectoring to flight bodies, it is necessary to understand very complicated exhaust flows which are often subject to shock waves and boundary layer separation. But researches for the thrust vector control using counterflow have been few. In the present study, experiments have been performed to investigate the characteristics of supersonic jets controlled by a thrust vectoring method using counterflow. The primary jet is expanded through a two-dimensional primary nozzle shrouded by collars, and is deflected by the suction of the air near nozzle into an upper slot placed between the primary nozzle and the upper collar. A shadowgraph method is used to visualize the supersonic jet flowfields. Primary nozzle pressure ratios and suction nozzle pressure ratios are varied from 3.0 to 5.0, and from 0.2 to 1.0 respectively. The present experimental results showed that, for a given primary nozzle pressure ratio, a decrease in the suction nozzle pressure ratio produced an increased thrust vector angle. As the suction nozzle pressure ratios were increased and decreased, the hysteresis of the thrust vectoring was observed through the wall pressure distributions

  • PDF

A PROPOSED CORRELATION FOR CRITICAL FLOW RATE OF WATER FLOW

  • KIM, YEON-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.135-138
    • /
    • 2015
  • A new correlation predicting the idealized critical mass-flow rates of water for subcooled and saturated liquid water including two-phase water flow was developed for a wide range of upstream stagnation pressures (e.g., 0.5-20.0 MPa). A choking correction factor dependent on the upstream stagnation pressure and subcooled temperature was introduced into a new correlation, and its values were suggested to satisfy the idealized nozzle data within 10% error ranges. The suggested correlation will be instructive and helpful for related studies and/or engineering works.

Research of reducing thermal stress generated in MGC turbine nozzles

  • Fujimoto, Syuu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.385-390
    • /
    • 2004
  • An unique ceramic material produced through unidirectional solidification with eutectic composition of two-phase oxides was introduced recently. This composite material has the microstructure of coupled networks of two single crystals interpenetrate each other without grain boundaries. Depending on this microstructure this material, called Melt Growth Composite (MGC), can sustain its room temperature strength up to 1$700^{\circ}C$ (near its melting point) and offer strong oxidization-resistant ability, making its characteristics quite ideal for the gas turbine application. The research project on MGC started in 2001 with the objective of establishing component technologies for MGC application to the high temperature components of the gas turbine engine. MGC turbine nozzles are expected to improve efficiency of gas turbine. However, reduction of the thermal stress is required since high thermal stress is easily generated in MGC turbine nozzles due to temperature distribution. Firstly, the hollow nozzle shape was optimized to reduce thermal stress using numerical analysis. From the results of the first hot gas flow tests, the thermal stress due to span-wise temperature distribution was required to be reduced, and separated nozzle to three pieces was designed. This was tested in hot gas flow at 140$0^{\circ}C$ level, and temperature distributions on the nozzle surface were obtained and stress field was evaluated.

  • PDF

Passive Control of the Condensation Shock Wave Using Bleed Slots

  • Kim, H.D.;Lee, K.H.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.299-304
    • /
    • 2001
  • The current study describes experimental and computational work on the passive control of the steady and unsteady condensation shock waves, which are generated in a transonic nozzle. The bleed slots are installed on the contoured wall of the transonic nozzle in order to control the magnitude of the condensation shock wave and its oscillations. For computations, a droplet growth equation is incorporated into the two-dimensional Navier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order tractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. An experiment using an indraft transonic wind tunnel is made to validate the computational results. The current computations represented well the experimental flows. From both the experimental and computational results it is found that the magnitude of the condensation shock wave in the bleed slotted nozzle is significantly reduced, compared with no passive control of solid wall. The oscillations of the condensation shock wave are successfully suppressed by a bleed slot system.

  • PDF

Numerical Analysis of Secondary Injection for Thrust Vector Control on 2-Dimensional Supersonic Nozzle (2차원 초음속 노즐에서의 2차 유동분사에 의한 추력 방향 제어 특성의 수치적 해석)

  • 오대환;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 2000
  • The advantages of the SITVC (Secondary Injection for Thrust Vector Control) technique over mechanical thrust vectoring systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. The optimal operating conditions of SITVC were investigated using in-house developed compressible flow analysis codes. Numerical experiments were used to examine the impact of the thrust vector direction with a variety of injection positions, mass flow rates, and injection angles on the two-dimensional expansion cone of a supersonic nozzle. The computational results showed that the optimal position of the secondary injection, with the maximum deviation angle and side thrust, was where the oblique shock generated by the secondary injection reached the end of the nozzle exit.

  • PDF

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF

Large Eddy Simulation on Inhibitor Effect of a Large Solid Rocket Motor (대형 고체로켓의 그레인간 인히비터에 의한 유동 교란 특성 LES)

  • Hong, Ji-Seok;Heo, Jun-Young;Moon, Hee-Jang;Sung, Hong-Gye;Lee, Do-Hyung;Kim, Yoon-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.31-37
    • /
    • 2011
  • Detail flow structure in a large solid rocket motor with two inhibitors has been investigated using 3D Large Eddy Simulation and Proper Orthogonal Decomposition(POD) analysis. Vortex shedding frequencies periodically occurred by inhibitors are coupled with flow acoustics induced by the impinging of vorticity on nozzle head. As a result of 3D analysis, it was observed that the nozzle exit flow causes roll-torques from the vortex being decomposed in unbalanced shape for the impinging of vorticity on the nozzle head.

  • PDF

Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles (이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션)

  • Bae, K.Y.;Chung, H.T.;Kim, H.B.;Jung, I.S.;Kim, C.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF

Development of an Ejector System for the Engine-Bay Ventilation (엔진베이 환기용 이젝터시스템 개발)

  • Im, Juhyun;Kim, Yeongryeon;Jun, Sangin;Jang, Seongho;Lee, Sanghyo
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.30-35
    • /
    • 2014
  • This study has been conducted to develop an ejector system applied in the aircraft engine-bay ventilation system. Tandem-Ejector was selected as a component of ventilation system because it could achieve high ventilation performance in spite of motive flow with small flow rate. Tandem-Ejector is composed of a primary nozzle and two mixing ducts ($1^{st}$ mixing duct and $2^{nd}$ mixing duct). In this study, 1-D Tandem-Ejector model has been built with conservation laws and isentropic relation for 1-D ejector sizing and performance prediction. Computational Fluid Dynamics(CFD) has been conducted to investigate ejector performance and flow characteristics in the ejector. Also, Tandem-Ejector performance tests have been conducted to obtain ejector pumping performance and to investigate stand-off (gap between primary nozzle and $1^{st}$ mixing duct inlet) effect on ejector pumping performance.

Design of a Turbine System for Liquid Rocket Engines (액체로켓용 터빈시스템 설계)

  • Lee, Dae-Sung;Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.11-18
    • /
    • 2002
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle and potential energy is converted to kinetic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power, etc.) following Liquid Rocket Engine (L.R.E.) system specifications. For simplicity of turbine system, impulse-type rotor blades for open-type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow-rate compared to close-type system. In this study, a partial admission nozzle is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system was introduced. Especially, partial admission nozzle was designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design is presented for a 10 ton thrust level of L.R.E.