• Title/Summary/Keyword: Two-dimensional velocity measurement

Search Result 108, Processing Time 0.035 seconds

Experimental Study on the Flow Behind an Axisymmetric Backward-Facing Step (축대칭 하향단 흐름에 대한 실험적 연구)

  • 김경천;부정숙;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2463-2476
    • /
    • 1994
  • Local mean fluctuating velocity components were measured in the separating and reattaching axisymmetrc region of turbulent boundary layer over the wall of convex cylinders placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. Measurements were made with three different diameters of cylinders with four different diameters of cylinders with four different diameter of the obstructions. The range of Reynolds number based on step height was between 5,000 to 25,200. The study demonstrates that the reattachment length decreases with decreasing cylinder radius and is always shorter than that for the two-dimensional backward-facing step flow at the condition of the same step height. It was also observed that the turbulent kinetic energy in the recirculating region increases with an increases in the radius of convex curvature. The measured velocity field suggests that the transverse curvature can effect definitely the formation of corner eddy.

Flow Visualization and Measurement of Velocity and Temperature in Parallel Plates

  • Piao, R.-L;Bae, D.-S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.277-284
    • /
    • 2004
  • This paper describes the influence of through-flow on the mixed convection in a parallel plates with the upper part is cooled and the lower part heated. When forced convection is imposed on natural convection, it is found that the flow pattern of mixed convection in the parallel plates can be classified into three patterns which were affected by Reynolds number. In such a mixed convection, the flow pattern plays an important role in the heat transfer process. In this study, thermo-sensitive liquid crystal suspension method is employed, then the visualization image acquired through the above method is processed by the color image processing technique and the two-dimensional velocity vector and temperature configuration are measured simultaneously.

Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body

  • Seol, Dong Myung;Seo, Jeong Hwa;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.404-413
    • /
    • 2013
  • In the present study, a towed underwater particle image velocimetry (PIV) system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D) PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.

Evaluation and Numerical Model of Hydraulic Resistance by Hanging Aquaculture Facilities (수하식 양식시설에 의한 운수저항의 평가와 수치모형)

  • LEE Jong Sup;PARK Il Heum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.607-623
    • /
    • 1995
  • A numerical model of hydraulic resistance by hanging aquaculture facilities is developed and applied to a model basin and a field. A drag stress term formulated by the quadratic law of drag force is introduced Tn the equations of motion for a two-dimensional depth-averaged flow. In the model basin, numerical experiments ave tarried out for the various shape of obstructions, string density and layout of facilities etc.. The flow pattern around the facilities is affected sensitively by the density of string and the layout of facilities. On the other hand, the velocity decay due to the hanging oyster aquaculture facilities is observed in Kamak bay, where the maximum velcocity decay rate is $25\%$ in spring tide. The model is also applied to the field, Kamak bay. The velocity decay rate in the model is comparable with the field measurement data. The velocity decreases around the down-stream area of the facilities, .hut it increases in the other region. The water elevation decreases during the flood and it increases during the ebb.

  • PDF

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

A Study on the Fluid Flew with Ultrasonic Forcing by PIV Measurement (초음파가 가진된 유체유동의 PIV계측에 의한 연구)

  • 주은선;이영호;나우정;정진도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1281-1290
    • /
    • 2001
  • A study on the fluid flow with ultrasonic forcing is carried out to obtain data for the turbulence enhancement. A large water tank is made of the transparent acrylic plates and a horizontal flow field is given by setting two acrylic tubes to face mutually on a horizontal line. A 2-dimensional PlV system which is composed of a continuous-output 4W Argon-ion laser, a high-speed video camera, a PC based by an image grabber and a high resolution monitor is used to investigate characteristics of the complex turbulence flow field. And a 2MHz ultrasonic transducer is used fur ultrasonic vibration forcing. Some experiments are carried out at Reynolds numbers of 2,000 and 4,000 and at 7 angles of ultrasonic incidence. In results, the flew velocity vector distribution, kinetic energy and turbulence intensity in both cases of with and without ultrasonic forcing are examined, compared and discussed by using PIV measurement. It is clarified that the ultrasonic forcing into flow field is valid to obtain the turbulence enhancement.

  • PDF

Study on the Periodic Flows in a Rectangular Container Under a Background Rotation

  • Suh, Yong-Kweon;Park, Jae-Hyun;Kim, Sung-Kyun;Son, Young-Rak
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.671-680
    • /
    • 2004
  • We present numerical and experimental results of the periodic flows inside a rectangular container under a background rotation. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify the fundamental reasons of discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

Study on the Periodic Flows in a Rectangular Container under a Background Rotation (직사각형 용기내의 주기유동에 관한 연구)

  • Park Jae Hyun;Suh Yong Kweon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.325-328
    • /
    • 2002
  • We present numerical and experimental result of the rotating flows inside a rectangular container under a background rotation. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify, if any, the fundamental reasons of discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

  • PDF

Effects of Clubhead Velocity on GRF Magnitude and Time during 7-iron Swing (골프스윙 시 지면반력 크기와 시간 차이가 클럽헤드 속도에 미치는 영향)

  • Woo, Byung Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the influence of clubhead velocity through regression analysis on the magnitude and time difference of the forward-backward, mediolateral, and vertical ground reaction peak forces generated by force plate during golf swing. Method: 16 subjects (age: 20.5±4.2 yrs, height: 176.0±5.4 cm, weight: 77.8±5.9 kg, handy: 2.4±1.7) who is elite golf player in high school and university, participated in this study. The study method adopted three-dimensional analysis with 8 cameras and ground reaction force measurement with two force plate. The analysis variables were clubhead velocity, and ground reaction analysis variables set four events in each graph based on the peak forces commonly generated in Fx, Fy, and Fz graphs of the ground reaction data during the golf swing. Results: As a result of analyzing the influence of ground reaction magnitude difference on clubhead velocity, the influence on clubhead velocity was ym4, zm1, xm4, zm2. The larger ym4, xm4, zm1, the fasterthe clubhead velocity, but the smallerthe zm2, the faster the clubhead velocity. And in time difference, the influence on the clubhead velocity was in the order of xt4, zt1, zt3. The shorter xt4, zt1, zt3 showed faster clubhead velocity. Conclusion: The leftfoot played a leading role in increasing the velocity of the clubhead. Although the result was caused by the interaction of the right foot and the left foot during the swing, the role of the left foot is relatively large.

Development of Stereocopic-PIV and its Application to the Measurement of the Near Wake of a Circular Cylinder (Stereocopic-PIV 개발과 원주근접 후류 계측)

  • Doh, D.H.;Kim, D.H.;Cho, G.R.;Lee, W.J.;Pyun, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.555-559
    • /
    • 2001
  • A new stereoscopic PIV is developed using two CCD cameras, stereoscopic photogrammetry, and a 3D-PTV principle. The wake of a circular cylinder is measured by the developed stereoscopic PIV technique. The B mode vortical structure of the wake over the Reynolds number 300 is clearly seen by the developed technique. The arrangement of the two cameras is based on angular position. The calibration of cameras and the pair-matching of the three-dimensional velocity vectors are based on 3D-PTV technique.

  • PDF