• Title/Summary/Keyword: Two-dimensional temperature

Search Result 1,050, Processing Time 0.025 seconds

Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base

  • Kang, Sung Kwon;Yong, Soon Jung;Song, Young-Kwang;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3615-3620
    • /
    • 2013
  • Two novel copper(II) bromide complexes with pyridine containing Schiff base ligands, $Cu(pmed)Br_2$ and $Cu(pmed)Br_2$ where pmed = N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (pmed) and dpmed = N,N-diethyl-N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (dpmed) were synthesized and characterized using X-ray single crystal structure analysis, optical and magnetic susceptibility measurements. Crystal structural analysis of $Cu(pmed)Br_2$ showed that the copper(II) ion has a distorted square-pyramidal geometry with the trigonality index of ${\tau}=0.35$ and two intermolecular hydrogen bonds, which result in the formation of two dimensional networks in the ab plane. On the other hand, $Cu(pmed)Br_2$ displayed a near square-pyramidal geometry with the value of ${\tau}=0.06$. In both compounds, the NNN Schiff base and one Br atom occupy the basal plane, whereas the fifth apical position is occupied by the other Br atom at a greater Cu-Br apical distance. The reported complexes show $g_{\mid}$ > $g_{\perp}$ > 2.0023 with a $d_{x2-y2}$ ground state and a penta-coordinated square pyramidal geometry. Variable temperature magnetic susceptibility measurements showed that the developed copper(II) complexes follow the Curie-Weiss law, that is there are no magnetic interactions between the copper(II) ions since the Cu--Cu distance is too far for magnetic contact.

Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER (혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구)

  • Park, Yeon-Ha;Hwang, Do Hyun;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • The domestic innovative power reactor named iPOWER will employ the passive molten corium cooling system(PMCCS) to cool down and stabilize the core melt in the severe accident. The final design concept of the PMCCS is yet to be determined, but the in-vessel retention through external reactor vessel cooling has been also considered as a viable strategy to cope with the severe accident. In this study, the two-phase natural circulation flow established between the reactor vessel and the insulation was simulated using a thermal-hydraulic system code, MARS-KS. The flow path of cooling water was modeled with one-dimensional nodes, and the boundary condition of the heat load from the molten core was defined to estimate the naturally-driven flow rate. The evolution of major thermal-hydraulic parameters were also evaluated, including the temperature and the level of cooling water, the void fraction around the lower head of the reactor vessel, and the heat transfer mode on its external surface.

Analysis the Effects of Physical Blocking Weirs on the Water Quality in Daechung Reservoir (물리적 차단시설이 대청호 수질에 미치는 효과 분석)

  • Lee, Heungsoo;Chung, Sewoong;Park, Hyungseok;Jeong, Donghwan
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2012
  • This study was aimed to assess the effects of additional installation of two different types of weirs, one is a curtain-type weir and another is a submerged-type weir, on the control of algal growth in Daechung Reservoir. A two-dimensional(2D) coupled hydrodynamic and eutrophication model that can accommodate vertical movement of the curtain weir following the water surface variations was verified using field data obtained in two distinctive hydrological years; dry(2008) and wet(2010). The model adequately simulated the temporal and spatial variations of water temperature, nutrients and algal(Chl-a) concentrations during the periods. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the model to 2001(dry year) and 2010 assuming 6 different scenarios according to installation locations. The curtain weirs that already installed at 3, 5, 7 sites(scenario C-2) showed significant effect on the control of algal growth in the reservoir; the reduction rates of algal concentration were placed in the range of 7.5~31.5% and 9.1~44.9% for 2001 and 2010, respectively. However the simulation results revealed that additional installation of curtain weirs(scenario C-3~C-6) in the bay area (choosori) have marginal effect. The effectiveness of submerged weir was evaluated against 2010 assuming 7 different scenarios according to installation locations, but all scenarios(S-1~S-7) showed neglectable or negative effect on the control of algal growth.

Preliminary Analysis of the CANDU Moderator Thermal-Hydraulics using the CUPID Code (2상 유동 해석코드 CUPID를 이용한 CANDU 원자로 감속재 열수력 예비해석)

  • Park, Sang Gi;Lee, Jae Ryong;Yoon, Han Young;Kim, Hyoung Tae;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.419-426
    • /
    • 2012
  • A transient, three-dimensional, two-phase flow analysis code, CUPID, has been developed in KAERI. In this work, we performed a preliminary analysis using the CUPID code to investigate the thermal-hydraulic behavior of the moderator in the Calandria vessel of a CANDU reactor. At first, we validated the CUPID code using the three experiments that were performed at Stern Laboratories Inc. To avoid the complexity to generate computational mesh around the Calandria tube bundles, a porous media approach was applied for the region. The pressure drop in the porous media zone was modeled by an empirical correlation. The results of the calculations showed that the CUPID code can predict the mixed flow pattern of forced and natural convection inside the Calandria vessel very well. Thereafter, the analysis was extended to a two-phase flow condition. Also, the local maximum temperature in the Calandria vessel was plotted as a function of the injection flow rate, which may be utilized to predict the local subcooling margin.

Preliminary Thermal-Hydraulic Analysis of the CANDU Reactor Moderator Tank using the CUPID Code (CUPID 코드를 이용한 CANDU 원자로 칼란드리아 탱크 내부유동 열수력 예비 해석)

  • Choi, Su Ryong;Lee, Jae Ryong;Kim, Hyoung Tae;Yoon, Han Young;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.95-105
    • /
    • 2014
  • The CUPID code has been developed for a transient, three-dimensional, two-phase flow analysis at a component scale. It has been validated against a wide range of two-phase flow experiments. Especially, to assess its applicability to single- and two-phase flow analyses in the Calandria vessel of a CANDU nuclear reactor, it was validated using the experimental data of the 1/4-scaled facility of a Calandria vessel at the STERN laboratory. In this study, a preliminary thermal-hydraulic analysis of the CANDU reactor moderator tank using the CUPID code is carried out, which is based on the results of the previous studies. The complicated internal structure of the Calandria vessel and the inlet nozzle was modeled in a simplified manner by using a porous media approach. One of the most important factors in the analysis was found to be the modeling of the tank inlet nozzle. A calculation with a simple inlet nozzle modeling resulted in thermal stratification by buoyance, leading to a boiling from the top of the Calandria tank. This is not realistic at all and may occur due to the lack of inlet flow momentum. To improve this, a new nozzle modeling was used, which can preserve both mass flow and momentum flow at the inlet nozzle. This resulted in a realistic temperature distribution in the tank. In conclusion, it was shown that the CUPID code is applicable to thermal-hydraulic analysis of the CANDU reactor moderator tank using the cost-effective porous media approach and that the inlet nozzle modeling is very important for the flow analysis in the tank.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Flow and Convective Heat Transfer Analysis Using RANS for A Wire-Wrapped Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1514-1524
    • /
    • 2006
  • This work presents the three-dimensional analysis of flow and heat transfer performed for a wire-wrapped fuel assembly of liquid metal reactor using Reynolds-averaged Wavier-Stokes analysis in conjunction with 557 model as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary conditions at inlet and outlet of the calculation domain. Three different assemblies, two 7-pin wire-spacer fuel assemblies and one bare rod bundle, apart from the pressure drop calculations for a 19-pin case, have been analyzed. Individual as well as a comparative analysis of the flow field and heat transfer have been discussed. Also, discussed is the position of hot spots observed in the wire-spacer fuel assembly. The flow field in the subchannels of a bare rod bundle and a wire-spacer fuel assembly is found to be different. A directional temperature gradient is found to exist in the subchannels of a wire-spacer fuel assembly Local Nusselt number in the subchannels of wire-spacer fuel assemblies is found to vary according to the wire-wrap position while in case of bare rod bundle, it's found to be constant.

Analysis of the Effects of Bathymetry Data on Hydraulic Results - Daecheong Reservoir - (저수지 모델의 지형정보 엽력자료가 수리결과에 미치는 영향 분석 - 대청호를 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2009
  • A lot of research on the application of GIS has been conducted in the field of water quality management. The function of a geometric data acquisition for reservoir and river models, however, is not enough to satisfy multiuser' convenience. CE-QUAL-W2 is a two-dimensional(2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae and sediment relationships. The purpose of this study is to analyzing which bathymetry information affects hydraulic results. There are consisted of three scenarios under consideration. The first scenario takes into account only tribatary type data such as Heoin and Okchen river. The second scenario, Heoin river constructs to tributary and Okchen river constructs by branch. Last scenario constructs Heoin and Okchen river by branch. The RMSE error results for the first, second and third scenarios are 0.61, 0.36 and 0.28 respectively.

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Convergence Characteristics of Preconditioned Euler Equations (예조건화된 오일러 방정식의 수렴특성)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The convergence characteristics of preconditioned Euler equations were studied. A perturbation analysis was conducted to understand the behavior of the preconditioned Euler equations. Various speed flows in a two-dimensional channel with a 10% circular arc in the middle of the channel were calculated. Roe's FDS scheme was used for spatial discretization and the LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of pressure and velocity were maintained regardless of the Mach numbers but that the convergence characteristics of temperature were strongly related to the Mach number and became worse as the Mach number decreased. The perturbation analysis well explained the trend of the convergence characteristics and showed that the convergence characteristics are strongly related with the behavior o( the Preconditioning matrix.