• Title/Summary/Keyword: Two-dimensional temperature

Search Result 1,047, Processing Time 0.025 seconds

3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power

  • Kim, J.H.;Park, S.I.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

Temperature distribution & heat transfer of rectangular cross section by the higher-order triangular finite element method (고차 삼각형 유한요소에 의한 구형단면의 온도분포와 열전달)

  • 용호택;서정일;조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.24-29
    • /
    • 1981
  • This paper is studied an efficient temperature distribution and heat transfer of two-dimensional rectangular cross-section by the higher-order triangular finite dynamic element and finite difference. This is achieved by employing a discretization technique based on a recently developed concept of finite dynamic elements, involving higher order dynamic correction terms in the associated stiffness and convection matrices. Numerical solution results of temperature distribution presented herein clearly optimum element and show that FEM10 is the most accurate temperature distribution, but heat transfer and computational effort is the most acquired.

  • PDF

A Numerical Method for One-dimensional Inverse Heat Conduction Problem Using Laplace Transform (라플라스 변환을 이용한 1차원 열전도의 수치해석)

  • Shin, Woon-Chul;Bae, Sin-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2007
  • An numerical method to estimate thermal diffusivity has been developed for one-dimensional unsteady heat conduction problem, when the temperatures are know at two positions in a semi-infinite body. Using the closed form solution which has already derived an explicit solution for the inverse problem for one-dimensional transient heat conduction using Laplace transform technique, we first estimate the surface temperature. The thermal diffusivity can be estimated by using the estimated surface temperature and measured temperatures, which include some uncertainties. The estimated surface heat flux and thermal diffusivity are found to be in good agreement with those of the experimented conditions. This method will be extended to the simultaneous measurement of thermal diffusivity and thermal conductivity.

INVESTIGATION OF ENERGETIC DEPOSITION OF Au/Au (001) THIN FILMS BY COMPUTER SIMULATION

  • Zhang, Q. Y.;Pan, Z. Y.;Zhao, G. O.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.183-189
    • /
    • 1998
  • A new computer simulation method for film growth, the kinetic Monte Carlo simulation in combination with the results obtained from molecular dynamics simulation for the transient process induced by deposited atoms, was developed. The behavior of energetic atom in Au/Au(100) thin film deposition was investigated by the method. The atomistic mechanism of energetic atom deposition that led to the smoothness enhancement and the relationship between the role of transient process and film growth mechanism were discussed. We found that energetic atoms cannot affect the film growth mode in layer-by-layer at high temperature. However, at temperature of film growth in 3-dimensional mode and in quasi-two-dimensional mode, energetic atoms can enhance the smoothness of film surface. The enhancement of smoothness is caused by the transient mobility of energetic atoms and the suppression for the formation of 3-dimensional islands.

  • PDF

A study on sensing for abnormality of BUS BAR in motor control center (모터컨트롤센터의 BUS BAR 이상 감지를 위한 실험적 연구)

  • Kim, Sung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5838-5842
    • /
    • 2011
  • The study mainly aims to explore how deterioration of motor control center, namely MCC, and vibration put impact on temperature of bus bar as well as temperature change of bolt-nut joint. The motor control center consists of three internal parts (i.e. R, S, T) which are for motor operation of high capacity. Two dimensional mechanism for measuring temperature was designed and manufactured with infrared temperature sensor. Installing it in inner motor control center enabled researcher to monitor temperature of bus bar as well as amount of change of current regularly. Temperature change of bus bar according to load was primarily examined based on a bolted joint in the experiment. It was clearly verified that temperature change of bus bar was proportional to current consumption. Therefore, installing non-contact two dimensional mechanism for measuring temperature in motor control center would be expected to prevent temperature rise owing to overload current and power outage as well as fire accident which can be triggered by poor electrical contact.

Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique (레이저형광여기(LIF)를 이용한 비등온 제트유동의 온도장 측정)

  • Yoon, Jong-Hwan;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1399-1408
    • /
    • 2000
  • A 2-dimensional temperature field measurement technique using PLIF (Planar Laser Induced Fluorescence) was developed and it was applied to an axisymmetric buoyant jet. Rhodamine B was used as a fluorescent dye. Laser light sheet illuminated a two-dimensional cross section of the jet. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured with an optical filter and a CCD camera. The spatial variations of temperature field of buoyant jet were derived using the calibration data between the LIF signal and real temperature. The measured results show that the turbulent jet is more efficient in mixing compared to the transition and laminar jet flows. As the initial flow condition varies from laminar to turbulent flow, the entrainment from ambient fluid increases and temperature decay along the jet center axis becomes larger. In addition to the mean temperature field, the spatial distributions of temperature fluctuations were measured by the PLIF technique and the result shows the shear layer development from the jet nozzle exit.

Thermal-pressure loading effect on containment structure

  • Kwak, Hyo-Gyoung;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.617-633
    • /
    • 2014
  • Because the elevated temperature degrades the mechanical properties of materials used in containments, the global behavior of containments subjected to the internal pressure under high temperature is remarkably different from that subjected to the internal pressure only. This paper concentrates on the nonlinear finite element analyses of the nuclear power plant containment structures, and the importance for the consideration of the elevated temperature effect has been emphasized because severe accident usually accompanies internal high pressure together with a high temperature increase. In addition to the consideration of nonlinear effects in the containment structure such as the tension stiffening and bond-slip effects, the change in material properties under elevated temperature is also taken into account. This paper, accordingly, focuses on the three-dimensional nonlinear analyses with thermal effects. Upon the comparison of experiment data with numerical results for the SNL 1/4 PCCV tested by internal pressure only, three-dimensional analyses for the same structure have been performed by considering internal pressure and temperature loadings designed for two kinds of severe accidents of Saturated Station Condition (SSC) and Station Black-out Scenario (SBO). Through the difference in the structural behavior of containment structures according to the addition of temperature loading, the importance of elevated temperature effect on the ultimate resisting capacity of PCCV has been emphasized.

Three Dimensional Thermal Cycle Analysis of Mold in Repeated Forming Process of TV Glass (TV 유리의 반복 성형공정에서 3차원 금형 열사이클 해석)

  • Hwang, Jung-Hea;Choi, Joo-Ho;Kim, Jun-Bum
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.192-198
    • /
    • 2000
  • Three dimensional thermal cycle analysis of the plunger is carried out in repeated forming process of the TV glass, which is continued work of two dimensional analysis where an efficient method has been proposed. The plunger undergoes temperature fluctuation during a cycle due to the repeated contact and separation from the glass, which attains a cyclic steady state having same temperature history at every cycle. Straightforward analysis of this problem brings about more than 90 cycles to get reasonable solution. An exponential function fitting method is proposed, which finds exponential function to best approximate temperature values of 3 consecutive cycles, and new cycle is restarted with the fitted value at infinite time. Number of cases are analyzed using the proposed method and compared to the result of straightforward repetition, from which one finds that the method always reaches nearly convergent solution within $9{\sim}12$ cycles, but turns around afterwards without further convergence. Two step use is found most efficient, in which the exponential fitting is carried out fer the first 12 cycles, followed by simple repetition, which shows fast convergence expending only 6 additional cycles to get the accuracy within 2 error. This reduces the computation cycle remarkably from 90 to 18, which is 80% reduction. From the parametric studies, one reveals that the overall thermal behavior of the plunger in terms of cooling parameters and time is similar to that of 2 dimensional analysis.

  • PDF

Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.123-131
    • /
    • 2019
  • The present investigation is concerned with two dimensional deformation in a homogeneous nonlocal thermoelastic solid with two temperature. The nonlocal thermoelastic solid is subjected to inclined load. Laplace and Fourier transforms are used to solve the problem. The bounding surface is subjected to concentrated and distributed sources. The analytical expressions of displacement, stress components, temperature change are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of angle of inclination and nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases are also deduced from the present investigation.