• Title/Summary/Keyword: Two-dimensional drainage

Search Result 47, Processing Time 0.025 seconds

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition (배수조건에 따른 액상화 수치모델의 거동평가)

  • Lee, Jin-Sun;Kim, Seong-Nam;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.63-74
    • /
    • 2019
  • Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.

A Gunshot Wounds to the Cervical Spine and the Cervical Spinal Cord: A Case Report (총상으로 인한 경추부 및 척수손상: 증례 보고)

  • Paeng, Sung Hwa
    • Journal of Trauma and Injury
    • /
    • v.25 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • Gunshot wounds are rare in Korea, but they have tended to increase recently. We experienced an interesting case of penetrating gunshot injuries to the cervical spine with migration the fragments of the bullet within the dural sac of the cervical spine, so discuss the pathomechanics, treatment and complications of gunshot wounds to the spine and present a review of the literature. A 38-year-old man who had tried to commit suicide with a gun was admitted to our hospital with a penetrating injury to the anterior neck. the patient had quadriplegia. A Computed tomography (CT) scan and 3-dimensional CT of the spine showed destruction of the left lateral mass and lamina of the 5th cervical vertebra; the bullet and fragments were found at the level of the 5th cervical vertebra. The posterior approach was done. A total laminectomy and removal of the lateral mass of the 5th cervical vertebrae were performed, and bone fragments and pellets were removed from the spinal canal, but an intradurally retained pellets were not totally removed. A dural laceration was noted intraoperatively, and CSF leakage was observed, so dura repair was done watertightly with prolene 6-0. The dura repair site was covered with fibrin glue and Tachocomb$^{(R)}$. Immediately, a lumbar drain was done. Radiographs included a postoperative CT scan and X-rays. The postoperative neurological status of the patient was improved compared with the preoperative neurological status. however, the patients developed symptoms of menigitis. He received lumbar drainage(200~250 cc/day) and ventilator care. After two weeks, panperitonitis due to duodenal ulcer perforation was identified. Finally, the patient died because of sepsis.

An Artificial Recharge Test and Its Numerical Simulation for the Analysis of Seepage in the Songsanri Tomb Site of Kongju (공주 송산리고분군 누수현상 원인 분석을 위한 인공함양시험 및 수치모델링)

  • 구민호;서만철
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • An artificial recharge test was performed to analyze the source of seepage observed inside the Songsanri tombs Kongju during the rainy season. In order to simulate simulate the test, a two-dimensional unsaturated groundwater flow model was developed. By the measured water level variation in the observation wells and in the artificail water tank, the model was cailbrated to estimate the model parameters such as fitting parameters in the constitutive relations(n and $\alpha$), the saturated volumetric water content, the residual volumetric water content, and the saturated hydraulic conductivity. Using the calibrated parameters, the recharge test was simulated. The results of the test and simulation show that the major source of the seepage is the downward groundwater flow through cracks in the protection layer the tombs. It was also analyzed by the steady state simulation that, with a perfect protection layer, a long-term precipitation that, with a perfect protection layer, a long-term precitation could cause only 10% increase of the effective saturation around the north side of the Muryong royal tomb by infiltration of the unsaturated groundwater from the North. Therefore, it is concluded that the most urgent protection plan for the tombs with respect to seepage is to reconstruct an effective waterproof-layer rather than a trenched drainage system.

  • PDF

Urban Flood Simulation Considering Building and Sewer Lines (건물 및 우수 배제를 고려한 시가지 범람해석)

  • Kang, Sang-Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.213-219
    • /
    • 2009
  • In densely urban areas, features such as the sewer system, buildings and river banks have an effect on flow dynamics and flood propagation, and will therefore be accounted for in the model set-up. While two-dimensional (2D) flood models of urban areas are at the forefront of current research into flood inundation mechanisms, they are however constrained by inadequate parameters of topography, and insufficient and inaccurate data. In this study, an urban flood model (overland flow, 2D urban flood flow and sewer flow) was combined and applied at Samcheok city which was damaged by inundation in 2002, in order to simulate inundation depth. The influence of buildings and pumping capacity was also analyzed to estimate the inundated depth in the study area. As a result, it was found that urban inundated depth are affected by pumping capacity directly and it increased about 20-30 cm on most of the modeled area with a building share rate of 0.2-0.6 per unit grid.

Performance Assessment of 3D Printed Mechanically Stabilized Earth Retaining Wall Backfilled with Recycling Soil (3D 프린팅 기술 기반 보강토 옹벽 순환토사 적용 뒤채움재의 성능 평가)

  • Kim, Jae-Hwan;Oh, Jeongho
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.81-93
    • /
    • 2024
  • In Korea, numerous large-scale infrastructure construction projects and housing site developments are being undertaken. However, due to limited land availability, sourcing high-quality backfill materials that meet the standards for railroad and road embankment compaction and mechanically stabilized earth (MSE) retaining wall construction poses significant challenges. Concurrently, there has been an increase in structural failures of many MSE retaining walls, attributed primarily to reduced bearing capacity and impaired drainage performance, resulting from inadequate backfill compaction. This study aimed to analyze the structural performance and safety of an MSE retaining wall using recycled soil as backfill. We conducted small-scale model tests utilizing 3D printing technology combined with two-dimensional numerical analysis. The study quantitatively evaluated the MSE retaining wall's performance concerning the recycled soil mixing ratio and reinforcement installation methods. Furthermore, the utility of 3D printing was confirmed through the production of an experimental wall designed to facilitate easy reinforcement attachment, mirroring the conditions of actual MSE retaining wall construction.

Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map (강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.839-850
    • /
    • 2018
  • The flood damage in urban areas due to torrential rain is increasing with urbanization. For this reason, accurate and rapid flooding forecasting and expected inundation maps are needed. Predicting the extent of flooding for certain rainfalls is a very important issue in preparing flood in advance. Recently, government agencies are trying to provide expected inundation maps to the public. However, there is a lack of quantifying the extent of inundation caused by a particular rainfall scenario and the real-time prediction method for flood extent within a short time. Therefore the real-time prediction of flood extent is needed based on rainfall-runoff-inundation analysis. One/two dimensional model are continued to analyize drainage network, manhole overflow and inundation propagation by rainfall condition. By applying the various rainfall scenarios considering rainfall duration/distribution and return periods, the inundation volume and depth can be estimated and stored on a database. The Rainfall-Duration-Flooding Quantity (RDF) relationship curve based on the hydraulic analysis results and the Self-Organizing Map (SOM) that conducts unsupervised learning are applied to predict flooded area with particular rainfall condition. The validity of the proposed methodology was examined by comparing the results of the expected flood map with the 2-dimensional hydraulic model. Based on the result of the study, it is judged that this methodology will be useful to provide an unknown flood map according to medium-sized rainfall or frequency scenario. Furthermore, it will be used as a fundamental data for flood forecast by establishing the RDF curve which the relationship of rainfall-outflow-flood is considered and the database of expected inundation maps.

Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method (적응적 메쉬세분화기법과 분할격자기법을 이용한 극한 도시홍수 실험 모의)

  • An, Hyun-Uk;Yu, Soon-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.511-522
    • /
    • 2011
  • Two-dimensional shallow water model based on the cut cell and the adaptive mesh refinement techniques is presented in this paper. These two mesh generation methods are combined to facilitate modeling of complex geometries. By using dynamically adaptive mesh, the model can achieve high resolution efficiently at the interface where flow changes rapidly. The HLLC Reimann solver and the MUSCL method are employed to calculate advection fluxes with numerical stability and precision. The model was applied to simulate the extreme urban flooding experiments performed by the IMPACT (Investigation of Extreme Flood Processes and Uncertainty) project. Simulation results were in good agreement with observed data, and transient flows as well as the impact of building structures on flood waves were calculated with accuracy. The cut cell method eased the model sensitivity to refinement. It can be concluded that the model is applicable to the urban flood simulation in case the effects of sewer and stormwater drainage system on flooding are relatively small like the dam brake.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

Analysis of the Individual Tree Growth for Urban Forest using Multi-temporal airborne LiDAR dataset (다중시기 항공 LiDAR를 활용한 도시림 개체목 수고생장분석)

  • Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Choi, Young-Eun;Choi, Jae-Yong;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • It is important to measure the height of trees as an essential element for assessing the forest health in urban areas. Therefore, an automated method that can measure the height of individual tree as a three-dimensional forest information is needed in an extensive and dense forest. Since airborne LiDAR dataset is easy to analyze the tree height(z-coordinate) of forests, studies on individual tree height measurement could be performed as an assessment forest health. Especially in urban forests, that adversely affected by habitat fragmentation and isolation. So this study was analyzed to measure the height of individual trees for assessing the urban forests health, Furthermore to identify environmental factors that affect forest growth. The survey was conducted in the Mt. Bongseo located in Seobuk-gu. Cheonan-si(Middle Chungcheong Province). We segment the individual trees on coniferous by automatic method using the airborne LiDAR dataset of the two periods (year of 2016 and 2017) and to find out individual tree growth. Segmentation of individual trees was performed by using the watershed algorithm and the local maximum, and the tree growth was determined by the difference of the tree height according to the two periods. After we clarify the relationship between the environmental factors affecting the tree growth. The tree growth of Mt. Bongseo was about 20cm for a year, and it was analyzed to be lower than 23.9cm/year of the growth of the dominant species, Pinus rigida. This may have an adverse effect on the growth of isolated urban forests. It also determined different trees growth according to age, diameter and density class in the stock map, effective soil depth and drainage grade in the soil map. There was a statistically significant positive correlation between the distance to the road and the solar radiation as an environmental factor affecting the tree growth. Since there is less correlation, it is necessary to determine other influencing factors affecting tree growth in urban forests besides anthropogenic influences. This study is the first data for the analysis of segmentation and the growth of the individual tree, and it can be used as a scientific data of the urban forest health assessment and management.

The Relationship Analysis between the Epicenter and Lineaments in the Odaesan Area using Satellite Images and Shaded Relief Maps (위성영상과 음영기복도를 이용한 오대산 지역 진앙의 위치와 선구조선의 관계 분석)

  • CHA, Sung-Eun;CHI, Kwang-Hoon;JO, Hyun-Woo;KIM, Eun-Ji;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.61-74
    • /
    • 2016
  • The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.