• Title/Summary/Keyword: Two-dimensional Fourier filtering

Search Result 4, Processing Time 0.024 seconds

Determination of Plane-wave Reflection Coefficient in Underwater Acoustic Pulse Tube Using Two-dimensional Fourier Filtering (이차원 푸리에 필터링을 이용한 수중음향 펄스 튜브에서의 평면파 반사계수 결정)

  • Kim, Wan-Gu;Kang, Hwi Suk;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.493-498
    • /
    • 2015
  • Complex acoustic signals can be formed in a water-filled acoustic pulse tube under some exciting conditions. It makes difficult to measure plane-wave reflection coefficient with the pulse tube for low frequency bands. In this study, using COMSOL Multiphysics we show that the tube wall excitation generates complex acoustic field of nonplanar mode as well as planar one. From such field incident or reflected planar mode can be decomposed respectively with a modal decomposition method, two-dimensional Fourier filtering. It makes possible to more accurately determine the plane-wave reflection coefficient of acoustic specimen with time gating.

Development of Two Dimensional Filter for the Reconstructive Image Processing

  • Lee, Hwang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.164-165
    • /
    • 1979
  • Two dimensional kernels which reconstruct the tomographic image from the blurred one formed by simple back-projection are investigated and their performances are compared. These kernels are derived from tile point spread function of the tomographic system and have the form of a ramp filter modified by several window functions to suppress ringing in the reconstruction. Computer simulation using a computer generated phantom image data with different correction functions(kernels) has been carried out. In this simulation, filtering in frequency domain by 2-D FFT technique or in space domain by 2-D direct convolution is considered. It is found that the-computation time required for real space convolution technique is much larger than that of Fourier 2-D filtering technique in the pratical situation.

  • PDF

Study on Dual-Energy Signal and Noise of Double-Exposure X-Ray Imaging for High Conspicuity

  • Song, Boram;Kim, Changsoo;Kim, Junwoo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.160-169
    • /
    • 2021
  • Background: Dual-energy X-ray images (DEI) can distinguish or improve materials of interest in a two-dimensional radiographic image, by combining two images obtained from separate low and high energies. The concepts of DEI performance describing the performance of double-exposure DEI systems in the Fourier domain been previously introduced, however, the performance of double-exposure DEI itself in terms of various parameters, has not been reported. Materials and Methods: To investigate the DEI performance, signal-difference-to-noise ratio, modulation transfer function, noise power spectrum, and noise equivalent quanta were used. Low- and high-energy were 60 and 130 kVp with 0.01-0.09 mGy, respectively. The energy-separation filter material and its thicknesses were tin (Sn) and 0.0-1.0 mm, respectively. Noise-reduction (NR) filtering used the Gaussian-filter NR, median-filter NR, and anti-correlated NR. Results and Discussion: DEI performance was affected by Sn-filter thickness, weighting factor, and dose allocation. All NR filtering successfully reduced noise, when compared with the dual-energy (DE) images without any NR filtering. Conclusion: The results indicated the significance of investigating, and evaluating suitable DEI performance, for DE images in chest radiography applications. Additionally, all the NR filtering methods were effective at reducing noise in the resultant DE images.

Two-Dimensional Filtering Through the Radon Transform (라돈변환을 이용한 2차원 필터링)

  • 원중선
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.17-36
    • /
    • 1998
  • The Radon transform has been widely used in various techniques of digital image processing such as the computerized topography, lineament analysis in a remotely sensed image, slant-stack processing of seismic data, and so on. Compared to the Fourier transform, the utility of two-dimensional convolutional or correlational properties of the Radon transform, however, has been underestimated. We show that the two-dimensional convolution and correlation is respectively reduced to be one-dimensional convolution and correlation with respect to ρ in the Radon space. Therefore, one can achieve a two dimensional filtering by applying a simple one-dimensional convolution in the Radon space followed by an inverse Radon transform. Tests of the approach using FIR filters are carried out specifically for enhancing the ship wake in a RADARSAT SAR image. The test results demonstrate that the two-dimensional filtering through the Radon transform effectively enhance the ship wake features as well as reducing sea speckle in the image. Although two-dimensional convolution and correlation through the Radon transform are not so much useful as those through the courier transform in views of efficiency and effectiveness, it can be utilized to improve the quality of a digitally processed output when the process should be accompanied by the Radon transform such as topography and lineament analysis of SAR image.