• Title/Summary/Keyword: Two-dimensional

Search Result 12,536, Processing Time 0.883 seconds

Plasma-Assisted Molecular Beam Epitaxy of InXGa1-XN Films on C-plane Sapphire Substrates (플라즈마분자선에피탁시법을 이용한 C-면 사파이어 기판 위질화인듐갈륨박막의 에피탁시 성장)

  • Shin, Eun-Jung;Lim, Dong-Seok;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2012
  • We report plasma-assisted molecular beam epitaxy of $In_XGa_{1-X}N$ films on c-plane sapphire substrates. Prior to the growth of $In_XGa_{1-X}N$ films, GaN film was grown on the nitride c-plane sapphire substrate by two-dimensional (2D) growth mode. For the growth of GaN, Ga flux of $3.7{\times}10^{-8}$ torr as a beam equivalent pressure (BEP) and a plasma power of 150 W with a nitrogen flow rate of 0.76 sccm were fixed. The growth of 2D GaN growth was confirmed by $in-situ$ reflection high-energy electron diffraction (RHEED) by observing a streaky RHEED pattern with a strong specular spot. InN films showed lower growth rates even with the same growth conditions (same growth temperature, same plasma condition, and same BEP value of III element) than those of GaN films. It was observed that the growth rate of GaN is 1.7 times higher than that of InN, which is probably caused by the higher vapor pressure of In. For the growth of $In_xGa_{1-x}N$ films with different In compositions, total III-element flux (Ga plus In BEPs) was set to $3.7{\times}10^{-8}$ torr, which was the BEP value for the 2D growth of GaN. The In compositions of the $In_xGa_{1-x}N$ films were determined to be 28, 41, 45, and 53% based on the peak position of (0002) reflection in x-ray ${\theta}-2{\theta}$ measurements. The growth of $In_xGa_{1-x}N$ films did not show a streaky RHEED pattern but showed spotty patterns with weak streaky lines. This means that the net sticking coefficients of In and Ga, considered based on the growth rates of GaN and InN, are not the only factor governing the growth mode; another factor such as migration velocity should be considered. The sample with an In composition of 41% showed the lowest full width at half maximum value of 0.20 degree from the x-ray (0002) omega rocking curve measurements and the lowest root mean square roughness value of 0.71 nm.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Numerical Simulation of the Experimental Investigation of the Two Dimensional Ram Accelerator Combustion Flow Field (이차원 램 가속기 연소 유동장의 실험적 연구의 수치 모사)

  • 최정열;정인석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.8-23
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the comparison with the experiments performed to investigate the ram accelerator flow field by using an expansion tube facility in Stanford University. Wavier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state numerical simulation shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$$O_2$$17N_2$ fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$$O_2$$12N_2$ mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. From the result of unsteady numerical simulation, the experimental result seems to be an instantaneous state during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs - Impact off the interface changes (Mixde-mode simulation을 이용한 4H-SiC DMOSFETs의 계면상태에서 포획된 전하에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choe, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility (${\sim}900cm^2/Vs$). These electronic properties allow high breakdown voltage, high frequency, and high temperature operation compared to Silicon devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances. the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. In this paper, we report the effect of the interface states ($Q_s$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. The result is a low-loss transient characteristic at low $Q_s$. Based on the simulation results, the DMOSFETs exhibit the turn-on time of 10ns at short channel and 9ns at without the interface charges. By reducing $SiO_2/SiC$ interface charge, power losses and switching time also decreases, primarily due to the lowered channel mobilities. As high density interface states can result in increased carrier trapping, or recombination centers or scattering sites. Therefore, the quality of $SiO_2/SiC$ interfaces is important for both static and transient properties of SiC MOSFET devices.

  • PDF

Metabolic Characteristic of the Liver of Dairy Cows during Ketosis Based on Comparative Proteomics

  • Xu, Chuang;Wang, Zhe;Liu, Guowen;Li, Xiaobing;Xie, Guanghong;Xia, Cheng;Zhang, Hong You
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1003-1010
    • /
    • 2008
  • The objective of the present study was to identify differences in the expression levels of liver proteins between healthy and ketotic cows, establish a liver metabolic interrelationship of ketosis and elucidate the metabolic characteristics of the liver during ketosis. Liver samples from 8 healthy multiparous Hostein cows and 8 ketotic cows were pooled by health status and the proteins were separated by two-dimensional-electrophoresis (2D-E). Statistical analysis of gels was performed using PDQuest software 8.0. The differences in the expression levels of liver proteins (p<0.05) between ketotic and healthy cows were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry. Five enzymes/proteins were identified as being differentially expressed in the livers of ketotic cows: expression of 3-hydroxyacyl-CoA dehydrogenase type-2 (HCDH), acetyl-coenzyme A acetyltransferase 2 (ACAT) and elongation factor Tu (EF-Tu) were down-regulated, whereas that of alpha-enolase and creatine kinase were up-regulated. On the basis of this evidence, it could be presumed that the decreased expression of HCDH, which is caused by high concentrations of acetyl-CoA in hepatic cells, in the livers of ketotic cows, implies reduced fatty acid ??oxidation. The resultant high concentrations of acetyl-CoA and acetoacetyl CoA would depress the level of ACAT and generate more ??hydroxybutyric acid; high concentrations of acetyl-CoA would also accelerate the Krebs Cycle and produce more ATP, which is stored as phosphocreatine, as a consequence of increased expression of creatine kinase. The low expression level of elongation factor Tu in the livers of ketotic cows indicates decreased levels of protein synthesis due to the limited availability of amino acids, because the most glucogenic amino acids sustain the glyconeogenesis pathway; thus increasing the level of alpha-enolase. Decreased protein synthesis also promotes the conversion of amino acids to oxaloacetate, which drives the Krebs Cycle under conditions of high levels of acetyl-CoA. It is concluded that the livers of ketotic cows possess high concentrations of acetyl-CoA, which through negative feedback inhibited fatty acid oxidation; show decreased fatty acid oxidation, ketogenesis and protein synthesis; and increased gluconeogenesis and energy production.

Evaluation of settlement behavior of ballasted layer mixed with specially shaped artificial ballasts under train loading (열차 하중 작용 시 특정형상 인공자갈이 혼합된 도상층에서의 침하 거동 평가)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.35-40
    • /
    • 2020
  • The ballast layers play a key role in distributing and supporting a trainload. On the other hand, it settles down by dynamic train loading due to large void ratios. Consequently, it requires continuous maintenance. In this paper, ballast layers mixed with three types of specially shaped artificial ballast (AB) (Rectangular, Tetrapod, Hexagonal) were modeled by using a two dimensional DEM (Discrete Element Method). Repeated loading tests were performed to evaluate the settlement behavior of the ballast layers. The smallest settlement was observed in the case of the ballast layer mixed with Tetrapod AB than in other cases, according to an analysis of the force transfer routes. In addition, contact force analysis showed that the Tetrapod AB, which has a concave shape, could easily make small and multi-channel force-transfer routes. This means that the stress in the ballast layer by the train loading transferred through the sleeper uniformly was distributed well by the AB. Therefore, the settlement of the ballast layer mixed with the concave-shaped Tetrapod AB could be reduced effectively under a repeated train loading. The effects of a decrease in settlement of the ballast layer highlight the possibility of a maintenance-free ballasted track.

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

Stream Type Classification and 2-Dimensional Hydraulic Characteristics and Bed Change in Anseongcheon Streams and Tributaries (안성천 중소하천의 하천분류 및 2차원 수리특성, 하상변동 모의)

  • Lee, Ji-Wan;Lee, Mi-Seon;Jung, In-Kyun;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.77-91
    • /
    • 2011
  • This study tries to find a streambed scouring and sedimentation characteristics through the Rosgen(1994)'s stream classification system while experiencing several flood events. The Jinwee and Osan streams, the tributaries of Anseongcheon were selected. The streams showed type C or type E. By the classification results, two Type C tributaries one Type C stream and one Type E tributary were selected. For the four selected stream reaches, the analysis of streambed change was implemented by using numerical model CCHE2D (Center for Computational Hydroscience and Engineering). To prepare the inlet boundary conditions of each stream, the WMS (Watershed Modeling System) HEC-1 was used and the streamflows of 50, 80, and 100-year return period were generated and the outlet boundary was set to an open boundary condition. The simulation results showed that when the flood pulse periodically the streambed changes also appears regularly. The results can be used to acquire the basic data for stream restoration.

A photoelastic study of the stress distribution on canine retraction by segmented TMA T-loop spring (Segmented TMA T-loop spring에 의한 견치 후방이동시의 응력분포에 관한 광탄성법적 분석)

  • Yoon, Young-Jooh;Kim, Kwang-Won;Yu, Pil-Sik
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.199-207
    • /
    • 2001
  • The segmented TMA T-loop spring, used for reciprocal space closure and described by Burstone, was used to achievebodily movement of canine. Photoelastic analysis is a technique for the transformation of internal stress into visible light patterns. The two-dimensional photoelastic stress analysis was performed, and stress distribution was recorded by photography. The purpose of this study was to visualize photoelastically the distribution of forces transmitted to the alveolus and surrounding structures using new segmented TMA T-loop spring for canine retraction. The results were as follows: 1. Decreased activation produced decreased stress of upper 1st. premolar extraction site and increased intrusive stress of upper 1st. molar, regardless of T-loop position. 2. At 5mm activation, More posterior positioning of T-loop Produced an increased stress in upper 1st. premolar extraction site. 3. At 3mm activation, More posterior positioning of T-loop produced an increased stress in upper 1st. premolar extraction site and mesial lower half of upper 1st. molar mesio-buccal root. 4. At 1mm activation, More anterior positioning of T-loop produced an increased stress in upper mesial and blew apex area of upper canine root. 5. 0.25 B/L ratio and 3mm activation produced bodily movement of canine. To summarize, desired tooth movement and anchorage requirement is possible by altering the activation and mesio-distal position of the T-loop spring.

  • PDF

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN BONE BY THE TRANSPALATAL LINGUAL ARCH (TRANSPALATAL LINGUAL ARCH에 의한 골내 응력 분포에 관한 광탄성적 연구)

  • Ko, Ki-Young;Tae, Ki-Chul;Kook, Yoon-Ah;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.711-721
    • /
    • 1997
  • The purpose of this study was to investigate the stress distribution and intensity derived from the transpalatal lingual arch in the investing bone composed of photoelastic material(PL-3). The transpalatal lingual arch wire was deflected in the horizontal and vertical direction to give the various conditions. The two-dimensional photoelastic stress analysis was performed, and the stress distrebution was recored by photography The results were as follows: 1. In bilateral expansion, as horizontal deflection was singly applied, the stress was more concentrated on the root apex in square free end than round. In square free end, as vertical deflection was increased gradually, the black line meaning center of rotation moved inferiorly together with the increment of whole fringes. 2. In application of vertical deflection on anchorage side for unilateral expansion, the stress distribution that expansive force leaned to expansion side was observed. As vortical deflection increased, the extruding stress was observed on molar of expansion side. And as horizontal deflection increased, the tipping stress on the molar of anchorage side was observed. 3. In unilateral rotation with the asymmetric toe-in, the fringe appeared on the distal aspect of root apex.

  • PDF