• Title/Summary/Keyword: Two-axes driving system

Search Result 23, Processing Time 0.029 seconds

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Position Synchronous Control of Two Axes Pneumatic Cylinder Driving Apparatus (2축 공기압 실린더 구동장치의 위치 동기 제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF

Synchronous Control of a Two-Axes Driving System by Disturbance Observer (외란 관측기를 이용한 2축 구동 시스템의 동기제어)

  • Byeon, Jeong-Hwan;Yeo, Dong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.242-249
    • /
    • 2001
  • In this study, a methodology of synchronous control has been developed that can is applied to position synchronization of a two-axes driving system such as overhead crane. The synchronous error is caused by model uncertainties and torque load at each axis. To overcome these problems, the synchronous control system has been composed of two disturbance observers to calculate the torque disturbance and one synchronous controller to eliminate synchronous error. By considering model uncertainties of each axis, the synchronous controller has been designed using H(sub)$\infty$ control theory. The effectiveness of the proposed method has been verified through simulation.

Synchronous Control of a Two-Axes Driving System by Disturbance Observer and PID Controller (외란 관측기와 PID제어기를 이용한 2축 주행시스템의 동기제어)

  • 변정환;김영복;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers, disturbance observers, and one synchronous controller. The speed controllers, based on the PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order for the speed response fo the second axis to correspond with the one of the first axis. The disturbance observer has been designed to restrain the torque disturbance. The synchronous controller eliminates the synchronous error by controlling the speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

The Design of a Direct Driving Gimbal System Using the DSP(TMS320F240) Controller and the Gyroscope (DSP제어기, 자이로센서를 이용한 GIMBAL시스템 설계)

  • 류정오;최중경;최승진;안기호;박성수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.139-142
    • /
    • 2001
  • This paper presents a design of two gimbal system. One is two axes stabilized platform that is targeted to preserve direction while vehicle that is adhered antiaircraft fire, radar or EOTS is moving. The system maintains stabilization by recovering error using the rate gyro. The other is three axes gimbal system that is intended to simulate various angle movement in space and to test three axes gyroscope. This system determines gyro condition comparing gyro output value with converted motor encoder value.

  • PDF

A Study on Construction of Synchronous Control System for Extension and Stability (확장성과 안정성을 고려한 동기제어계의 구축에 관한 연구)

  • Byun, Jung-Hoan;Kim, Young-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1135-1142
    • /
    • 2002
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a multi-axes driving system has been developed. The synchronous error is caused by model uncertainties and disturbance at each axis. To overcome these problems, the synchronous control system of each axis has been composed of reference model, speed and synchronous controllers. The speed control system has been designed to follow speed reference. And the synchronous controller has been designed to keep minimizing the position synchronous error by reference model and H$\sub$ / approach. By the proposed method, position synchronous control system can be easily extended to two or more axes driving system. The effectiveness of the proposed method has been demonstrated by experiment.

Position Synchronous Control of a Two-Axes Driving System by H$\infty$ Approch (H$\infty$ 제어기법을 이용한 2축 구동 시스템의 위치동기제어)

  • Byun, Jung-Hoan;Yeo, Dong-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers and one synchronous controller. The speed controllers based on PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order that speed response of the second axis corresponds with one of first axis. Especially, considering to model uncertainties of each axis, the synchronous controller has been designed using H$\infty$ control theory. The controller eliminates the synchronous error by controlling speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Position synchronizing control of two axes system using by VSS and $H_{\infty}$ control (VSS 및 $H_{\infty}$ 제어법에 의한 2축 위치 동기 제어)

  • 변정환;김영복;양주호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.754-758
    • /
    • 1996
  • In this paper, a new method of position synchronizing control is proposed for multi-axes driving system. The proposed synchronizing control system is constituted with speed and synchronizing controller. The structure of synchronizing control system is varied by sign of synchronizing error. When a disturbance input becomes added to one axis, this axis becomes slave axis. The other axis is master axis. Therefore, master axis is not influenced by the disturbance. The speed controller of the first axis is designed by $H_{\infty}$ control theory. The speed controller of the second axis is designed by inverse dynamics of speed control system of the first axis. The speed control system designed with $H_{\infty}$ controller guarantees low sensitivity for the disturbance as well as robustness against model uncertainties. Especially, the synchronizing controller is designed to keep position error to minimize by controlling speed of slave axis. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Robust Synchronous Control of a Two-Axes Driving System using Coupling Structure (커플링구조를 이용한 2축 구동시스템의 강인한 위치동기제어)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.248-252
    • /
    • 2002
  • In this study, a synchronous controller which can be applied to two-axes position synchronization has been developed. The synchronous control system based on coupling structure has been composed of speed and synchronous controller. The speed controller has been designed to fellow speed reference. And the synchronous controller has been designed in the view point of accurate synchronization and robust stability by $H_{\infty}$ approach. The effectiveness of the designed synchronous controller has been demonstrated by experiment.

  • PDF

Ride Performance Evaluation of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 승차감 성능 평가 연구)

  • Lee, Ji-Sun;Choi, Gyoo-Jae;Lee, Kwang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • Semi-active cabin air suspension system improves driver's comfort by controlling the damping characteristics in accordance with driving situation. For the driver's comfort evaluation, test procedure has the two methodologies which are filed test and lab test. A field test method has a drawback. It requires a lot of time and money on repetitive test, due to the sensitivity of field test. On the other hand, the test with six axes simulation table at laboratory can obtain the repeatability of test, better than the field test method. In this paper, the procedures of ride performance test and control logic tuning with the table are presented. Drive files of the table can be represented with the almost same input condition as field test data. According to the result from the comparative test using six axes simulation table between passive and semi-active system by making ECU logic tuning, the RMS acceleration of semi-active cabin air suspension system was reduced by 29.6% compared with passive system.