• Title/Summary/Keyword: Two-Zone Modeling

Search Result 128, Processing Time 0.027 seconds

Genetic Algorithm Based Optimal Seismic Design Method for Inducing the Beam-Hinge Mechanism of Steel Moment Frames (철골모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • In this paper, the optimal seismic design method for inducing the beam-hinge collapse mechanism of steel moment frames is presented. This uses the non-dominated sorting genetic algorithm II(NSGA-II) as an optimal algorithm. The constraint condition for preventing the occurrence of plastic hinges at columns is used to induce the beam-hinge collapse mechanism. This method uses two objective functions to minimize the structural weight and maximize the dissipated energy. The proposed method is verified by the application to nine story steel moment frame example. The minimum column-to-beam strength ratio to induce the beam-hinge collapse mechanism are investigated based on the simulation results. To identify the influence of panel zone on the minimum column-to-beam strength ratio, three analytic modeling methods(nonlinear centerline model without rigid end offsets, nonlinear centerline model with rigid end offsets, nonlinear model with panel zones) are used.

Model Algorithms for Estimates of Inhalation Exposure and Comparison between Exposure Estimates from Each Model (흡입 노출 모델 알고리즘의 구성과 시나리오 노출량 비교)

  • Park, Jihoon;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.358-367
    • /
    • 2019
  • Objectives: This study aimed to review model algorithms and input parameters applied to some exposure models and to compare the simulated estimates using an exposure scenario from each model. Methods: A total of five exposure models which can estimate inhalation exposure were selected; the Korea Ministry of Environment(KMOE) exposure model, European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment(ECETOC TRA), SprayExpo, and ConsExpo model. Algorithms and input parameters for exposure estimation were reviewed and the exposure scenario was used for comparing the modeled estimates. Results: Algorithms in each model commonly consist of the function combining physicochemical properties, use characteristics, user exposure factors, and environmental factors. The outputs including air concentration ($mg/m^3$) and inhaled dose(mg/kg/day) are estimated applying input parameters with the common factors to the algorithm. In particular, the input parameters needed to estimate are complicated among the models and models need more individual input parameters in addition to common factors. In case of CEM, it can be obtained more detailed exposure estimates separating user's breathing zone(near-field) and those at influencing zone(far-field) by two-box model. The modeled exposure estimates using the exposure scenario were similar between the models; they were ranged from 0.82 to $1.38mg/m^3$ for concentration and from 0.015 to 0.180 mg/kg/day for inhaled dose, respectively. Conclusions: Modeling technique can be used for a useful tool in the process of exposure assessment if the exposure data are scarce, but it is necessary to consider proper input parameters and exposure scenario which can affect the real exposure conditions.

Indoor air quality and ventilation requirement in residential buildings: A case study of Tehran, Iran

  • Ataei, Abtin;Nowrouzi, Ali;Choi, Jun-Ki
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.143-153
    • /
    • 2015
  • The ventilation system is a key device to ensure both healthful indoor air quality (IAQ) and thermal comfort in buildings. The ventilation system should make the IAQ meet the standards such as ASHRAE 62. This study deals with a new approach to modeling the ventilation and IAQ requirement in residential buildings. In that approach, Elite software is used to calculate the air supply volume, and CONTAM model as a multi-zone and contaminant dispersal model is employed to estimate the contaminants' concentrations. Amongst various contaminants existing in the residential buildings, two main contaminates of carbon dioxide ($CO_2$) and carbon monoxide (CO) were considered. CO and $CO_2$ are generated mainly from combustion sources such as gas cooking and heating oven. In addition to the mentioned sources, $CO_2$ is generated from occupants' respirations. To show how that approach works, a sample house with the area of $80m^2$ located in Tehran was considered as an illustrative case study. The results showed that $CO_2$ concentration in the winter was higher than the acceptable level. Therefore, the air change rate (ACH) of 4.2 was required to lower the $CO_2$ concentration below the air quality threshold in the living room, and in the bedrooms, the rate of ventilation volume should be 11.2 ACH.

A Study on Feature-Based Multi-Resolution Modelling - Part II: System Implementation and Criteria for Level of Detail (특징형상기반 다중해상도 모델링에 관한 연구 - Part II: 시스템 구현 및 상세수준 판단기준)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.444-454
    • /
    • 2005
  • Recently, the requirements of multi-resolution models of a solid model, which represent an object at multiple levels of feature detail, are increasing for engineering tasks such as analysis, network-based collaborative design, and virtual prototyping and manufacturing. The research on this area has focused on several topics: topological frameworks for representing multi-resolution solid models, criteria for the level of detail (LOD), and generation of valid models after rearrangement of features. As a solution to the feature rearrangement problem, the new concept of the effective zone of a feature is introduced in the former part of the paper. In this paper, we propose a feature-based non-manifold modeling system to provide multi-resolution models of a feature-based solid or non-manifold model on the basis of the effective feature zones. To facilitate the implementation, we introduce the class of the multi-resolution feature whose attributes contain all necessary information to build a multi-resolution solid model and extract LOD models from it. In addition, two methods are introduced to accelerate the extraction of LOD models from the multi-resolution modeling database: the one is using an NMT model, known as a merged set, to represent multi-resolution models, and the other is storing differences between adjacent LOD models to accelerate the transition to the other LOD. We also suggest the volume of the feature, regardless of feature type, as a criterion for the LOD. This criterion can be used in a wide range of applications, since there is no distinction between additive and subtractive features unlike the previous method.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

A Study on the Supportive Stiffness in Transitional Zones through Moving Load-Based Three-Dimensional Modeling (이동하중과 3차원 모델링을 통한 접속부 지지강성연구)

  • Woo, Hyeun-Joon;Lee, Seung-Ju;Kang, Yun-Suk;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1542-1549
    • /
    • 2011
  • The Transitional zone between bridge abutment and earthwork is one of the representative vulnerable zones in railway where differential settlements may take place due to the different supportive stiffness. Although transitional zones are managed with stricter standards than those of the other earthwork zones either in the design and construction stages, it is very difficult to prevent differential settlement perfectly. A three-dimensional numerical analyses were performed by applying train moving load in this study. The analytical model including abutments and earthwork zones was constituted with rail, sleepers, track concrete layer (TCL), hydraulic stabilized base (HSB), reinforced road bed, and road bed using railway and road base structure. The clamp connecting the rail and sleeper were also modeled as the element with spring coefficient. The train wheel is modeled in the actual size and moved on the rail with 300 km/hr speed. The deformation characteristics at each point of the rail and the ground were considered in detail when moving the train wheel. The analysis results were compared with those from the two-dimensional analysis without considering moving load. The research results show that displacement and stress were greater in the three-dimensional analysis than in other analyses, and the three-dimensional analysis with moving load should be performed to evaluate railway performance.

  • PDF

The Influence of Opposing Flow and Its Separation of SBF over Masan on Southeast Coast of the Korea

  • Ji, Hyo-Eun;Lee, Kwi-Ok;Lee, Soon-Hwan;Park, Soon-Young;Jeon, Won-Bae;Lee, Hwa-Woon
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.216-227
    • /
    • 2011
  • A Sea breeze front (SBF) appears clear particularly if there is opposing wind, and the convergence zone along a SBF affects air quality in coastal areas. This study analyzes features of SBF separation in the presence of an opposing flow in the southeastern coastal area of Korea Peninsula. Using a Regional Atmospheric Modeling System (RAMS) numerical simulation and an opposing flow, two types of SBF were observed at Masan coastal area of Korea. In one, the SBF penetrated inland despite of the opposing flow at Jinhae (1100 LST), Wondong (1700 LST), Saenglim (1700 LST), and Miryang (1700 LST). In the other, the SBF remained on the coastline along with Jinhae (1100 LST), Masan (1400 LST), Jinbuk (1400 LST), and Gaecheon (1700 LST), because the inflow of the sea breeze was not sufficient to penetrate inland against the opposing flow. This study shows that SBFs are affected by the formation of an opposing flow, as well as the inflows of a sea breeze and the opposing flow.

Analysis of the Degree of Fatigue Damage in Truss Railway Bridge by Actual Stress and Simulation (실측응력 및 시뮬레이션에 의한 트러스 철도교의 피로피해도 분석)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Kim, eun-sung
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.149-158
    • /
    • 2000
  • After measuring actual stress by two measurements(Dynamic Strain Meter, Histogram Recorder) on truss rail road bridge, we could perform time history analysis by 3-D beam element method on modelling bridge. And then, after analyzing bridge structure in static by 3-D modelling, we estimated degree of fatigue damage in main member, secondary member of tie zone, cutting area of base metal cross section for confirming the result. In case that the simulated stress is carried out on modeling bridge, most of those simulation mainly is performed by main members. But in real bridge fatigue damage problems generally caused by junctions, connections, joints in which especially local stress is activated. Therefore, in this paper actual stress on critical area was estimated through the analysis result by simulation. With this study, we can estimate the degree of fatigue damage from a safety point of view and comparative accuracy.

  • PDF

GIS-based strategic approach for the estimation of soil erosion (토사유실평가를 위한 GIS기반의 전략적 접근 방법)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Je, Seong-Jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents a strategic approach to effective soil conservation planning and management. To do this, the soil loss model, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion in two basins (Andong and Imha basin), which are distinct in terms of sedimentation in the reservoir of each basin. Areas with high soil erosion potential were analyzed on the basis of land surface characteristics handled by geographic information system (GIS), especially dividing the basin into several sub-basins and then examination was emphasized near the river channel (water-pollutant buffering zone), along which human activities are large. Modeling results show the approach suggested herein provides a basis and guideline for choosing prior erosion risk areas to be examined for soil conservation planning and management. Also, this approach is relatively simple and has wide practical applicability.

  • PDF

Study on the Damping Performance Characteristics Analysis of Shock Absorber of Vehicle by Considering Fluid Force

  • Lee Choon-Tae;Moon Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.520-528
    • /
    • 2005
  • In this study, a new mathematical dynamic model of displacement sensitive shock absorber (DSSA) is proposed to predict the dynamic characteristics of automotive shock absorber. The performance of shock absorber is directly related to the vehicle behaviors and performance, both for handling and ride comfort. The proposed model of the DSSA has two modes of damping force (i.e. soft and hard) according to the position of piston. In this paper, the performance of the DSSA is analyzed by considering the transient zone for more exact dynamic characteristics. For the mathematical modeling of DSSA, flow continuity equations at the compression and rebound chamber are formulated. And the flow equations at the compression and rebound stroke are formulated, respectively. Also, the flow analysis at the reservoir chamber is carried out. Accordingly, the damping force of the shock absorber is determined by the forces acting on the both side of piston. The analytic result of damping force characteristics are compared with the experimental results to prove the effectiveness. Especially, the effects of displacement sensitive orifice area and the effects of displacement sensitive orifice length on the damping force are observed, respectively. The results reported herein will provide a better understanding of the shock absorber.