• Title/Summary/Keyword: Two-Zone Model

Search Result 568, Processing Time 0.022 seconds

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2 (CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석)

  • Park, Hyungseok;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

Numerical Modeling Effects of a Skimmer Weir Method on the Control of Algal Growth in Daecheong Reservoir (부상웨어 설치에 따른 대청호 조류 성장 억제 효과 수치모의)

  • Kim, Yu Kyung;Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2007
  • A float-type weir has been proposed for the control of algal blooms in some of eutrophic reservoirs recently. It is known as a costly and ecologically sound method, but there is little understanding about the sustainability of this low-cost technology for reservoirs that are located in monsoon climate areas where large flood events during the summer cause high water surface fluctuations. The objective of this study was to assess the effectiveness of a skimmer weir aimed at controlling algal blooms in the lacustrine zone and near the drinking water withdrawal structures of Daecheong Reservoir under various hydrodynamic flow conditions. The effect of weir on the control of algal blooms was simulated using a laterally averaged two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface fluctuations. Numerical simulations were performed for two different hydrological conditions, 2001 and 2004 for representing drought year and normal year, respectively. The results showed that the weir is very effective method to control algal blooms in the reservoir by curtailing the transport of phosphorus and algae from contaminated inflow to the downstream lacustrine epilimnion during the draught year. However, large flood events occurred in 2004 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments.

Behavior of simple precast high-strength concrete beams connected in the maximum bending moment zone using steel extended endplate connections

  • Magdy I. Salama;Jong Wan Hu;Ahmed Almaadawy;Ahmed Hamoda;Basem O. Rageh;Galal Elsamak
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.627-641
    • /
    • 2024
  • This paper presents an experimental and numerical study to investigate the behavior of the precast segmental concrete beams (PSCBs) utilizing high-strength concrete (HSC) connected in the zone of the maximum bending moment using steel extended endplate connections (EECs). The experimental study consisted of five beams as follows: The first beam was the control beam for comparison, which was an unconnected one-piece beam made of HSC. The other four other beams consisted of two identical pieces of precast concrete. An important point to be noted is that at the end of each piece, a steel plate was used with a thickness of 10 mm. Moreover, this steel plate was welded to the lower and upper reinforcing bars of the beam. Furthermore, the steel plate was made to connect the two pieces using the technique of EECs. Several variables were taken in these four beams, whether from the shape of the connection or enhancing the behavior of the connection using the post-tensioning technique. EECs without stiffeners were used for some of the tested beams. The behavior of these connections was improved using stiffeners and shear bolts. To get accurate results, a comparison was made between the behaviors of the five beams. Another important point to be noted is that Abaqus and SAP2000 programs were used to investigate the behavior of PSCBs and to ensure the accuracy of the modeling process which showed a good agreement with the experimental results. Additionally, the simplified modeling using SAP2000 was able to model the nonlinear behavior of PSCBs connected using steel EECs. It was found that the steel pre-tensioned bolted EECs, reinforced with steel stiffeners and shear anchors, could be used to connect the precast HSC segmental beams via the internal pre-stressing technique.

A Study on Prediction of Inundation Area considering Road Network in Urban Area (도시지역 도로 네트워크를 활용한 침수지역 예측에 관한 연구)

  • Son, Ah Long;Kim, Byunghyun;Han, Kun Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.307-318
    • /
    • 2015
  • In this study, the efficiency of two-dimensional inundation analysis using road network was demonstrated in order to reduce the simulation time of numerical model in urban area. For this objective, three simulation conditions were set up: Case 1 considered only inundation within road zone, while Case 2 and 3 considered inundation within road and building zone together. Accordingly, Case 1 used grids generated based on road network, while Case 2 and 3 used uniform and non-uniform grids for whole study area, respectively. Three simulation conditions were applied to Samsung drainage where flood damage occurred due to storm event on Sep. 21, 2010. The efficiency of suggested method in this study was verified by comparison the accuracy and simulation time of Case 1 and those of Case 2 and 3. The results presented that the simulation time was fast in the order of Case 1, 2 and 3, and the fit of inundation area between each case was more than 85% within road zone. Additionally, inundation area of building zone estimated from inundation rating index gave a similar agreement under each case. As a result, it is helpful for study on real-time inundation forecast warning to use a proposed method based on road network and inundation rating index for building zone.

Behavior of Solid Circular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중실원형교각의 거동특성)

  • 김재관;김익현;임현우;전귀현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.83-95
    • /
    • 2001
  • Scale model tests were performed to investigate the seismic behavior and capacity of reinforced concrete piers that were not detailed for seismic load. The prototype pier is of solid circular section. Additional lateral reinforcing bars were not provided that might be required for the confinement. Two kinds of reinforcement details are considered for the vertical longitudinal reinforcing bars: lap spliced and continuous. In the case of lap spliced model all the longitudinal bars were lap spliced at the same height in the bottom plastic hinge zone. Three specimens were constructed and subjected to quasi-static cyclic lateral loading while the vertical load held constant. Non-ductile failure modes were observed in the test of lap spliced models but limited ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

  • PDF

Analysis of Jet-drop Distance from the Multi Opening Slots of Forced-ventilation Broiler House (강제 환기식 육계사 다중 입기 슬롯에서의 입기류 도달거리 분석)

  • Kwon, Kyeong-Seok;Ha, Tae-Hwan;Lee, In-Bok;Hong, Se-Woon;Seo, Il-Hwan;Jessie, P. Bitog
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.55-65
    • /
    • 2012
  • In the winter season, when the ventilation system is operating, the fresh cold air from the slot-type openings of broiler house which directly reached the animal zone can cause various problems such as thermal stress, decreasing of feed and water consumption, occurrence of respiratory disease, and etc. Therefore it is very important to control the trajectory of aero-flow from the slot openings to induce an efficient thermal heat change. Jet-drop distance model was proposed to predict and control the jet-trajectory. However their study was restricted due to the small scaled model and difficulties of measuring the Jet-drop distance. In this study, CFD was applied to analyze qualitatively and quantitatively the jet-drop distance in a real broiler house. The various variables were considered such as installed slot-angle, designed ventilation rate, and the outdoor ambient temperature. From the present study, two linear-regression models using the Jet-drop factor and corrected Archimedes number, and their R-squared values 0.744 and 0.736, respectively, were used. From this study, the applicability of CFD on the analysis of Jet-drop distance model was confirmed.

Flow Analyses in the Bifurcated Duct with PIV System and Computer Simulation (입자영상유속계와 컴퓨터 시뮬레이션을 이용한 분기관내 유동해석)

  • Sub, Sang-Ho;Choi, Yul;Roh, Hyung-Woon;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.123-130
    • /
    • 1999
  • The objective of the current study is to understand steady 3-dimensional flow phenomena in a bifurcated duct experimentally. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. The gray level cross-correlation method is applied to the image processing algorithm. The subpixel and the area interpolation methods are used to obtain the final velocity vectors. The finite volume predictions are used to analyze the flow patterns in the bifurcation model. The results of the computer simulation and the PIV experiment for three-dimensional flow show the recirculation zone and the formation of the paired secondary flow distal to the apex of the bifurcation model. The results obtained with the two methods also show that the branch flow strongly strikes the inner wall due to the inertial effect and accompanied helical motion as it flows toward the outer wall.

Study on the Damping Performance Characteristics Analysis of Shock Absorber of Vehicle by Considering Fluid Force

  • Lee Choon-Tae;Moon Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.520-528
    • /
    • 2005
  • In this study, a new mathematical dynamic model of displacement sensitive shock absorber (DSSA) is proposed to predict the dynamic characteristics of automotive shock absorber. The performance of shock absorber is directly related to the vehicle behaviors and performance, both for handling and ride comfort. The proposed model of the DSSA has two modes of damping force (i.e. soft and hard) according to the position of piston. In this paper, the performance of the DSSA is analyzed by considering the transient zone for more exact dynamic characteristics. For the mathematical modeling of DSSA, flow continuity equations at the compression and rebound chamber are formulated. And the flow equations at the compression and rebound stroke are formulated, respectively. Also, the flow analysis at the reservoir chamber is carried out. Accordingly, the damping force of the shock absorber is determined by the forces acting on the both side of piston. The analytic result of damping force characteristics are compared with the experimental results to prove the effectiveness. Especially, the effects of displacement sensitive orifice area and the effects of displacement sensitive orifice length on the damping force are observed, respectively. The results reported herein will provide a better understanding of the shock absorber.

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.