• Title/Summary/Keyword: Two-Phase

Search Result 9,562, Processing Time 0.046 seconds

COMPARISON OF TWO SCATTERING PHASE FUNCTIONS IN MULTIPLE SCATTERING ENVIRONMENT (다중산란 환경에서의 두개의 산란 위상함수 비교)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.4
    • /
    • pp.113-118
    • /
    • 2010
  • The Henyey-Greenstein (H-G) phase function, which is characterized by a single parameter, has been generally used to approximate the realistic dust-scattering phase function in investigating scattering properties of the interstellar dust. Draine (2003) proposed a new analytic phase function with two parameters and showed that the realistic phase function is better represented by his phase function. If the H-G and Draine's phase functions are significantly different, using the H-G phase function in radiative transfer models may lead to wrong conclusions about the dust-scattering properties. Here, we investigate whether the H-G and Draine's phase functions would indeed produce significant differences in radiative transfer calculations for two simple configurations. For the uniformly distributed dust with an illuminating star at the center, no significant difference is found. However, up to ~ 20% of difference is found when the central star is surrounded by a spherical-shell dust medium and the radiation of $\lambda$ < $2000\;{\AA}$ is considered. It would mean that the investigation of dust-scattering properties using the H-G phase function may produce errors of up to ~ 20% depending on the geometry of dust medium and the radiation wavelength. This amount of uncertainty would be, however, unavoidable since the configurations of dust density and radiation sources are only approximately available.

A Theoretical Analysis on Pressure Loss and Gas Volumetric Fraction of Gas-Liquid Two-Phase Flow (기액이상류의 압력손실과 가스상의 체적분율에 관한 이론적 해석)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • Gas volumetric fractions and pressure loss are very important parameters in understanding and predicting gas-liquid two-phase flows. They are also essential to design large heat exchanging system in many industries, boiler and refrigerating systems mounted at ships. This paper therefore presents a theoretical method of predicting the pressure loss and gas volumetric fractions in gas-liquid two-phase flows for the whole range of pipe inclinations. The theoretical analysis is based on the two-fluid stratified flow model. It also provides the results of the comparisons between this theoretical analysis results and previous experimental results.

  • PDF

IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER (물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장)

  • Cho, H.K.;Lee, H.D.;Park, I.K.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

The Study of Two Phase SRM with No-Flux Reversal in the Stator (고정자에서 자속의 교번이 없는 2상 SRM의 특성에 관한 연구)

  • Oh, Seok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.31-33
    • /
    • 2007
  • Cost reduction requires lowering number of power devices used in the converter driving SRM. This is quite feasible in SRM drive systems than in other drive systems. This paper deals with design, analysis, and simulation of such a novel two phase SRM. A novel two phase SRM has high performance, self-starting capability, high efficiency, and low manufacturing cost. Additionally, the stator back iron does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited leading to a greater reduction in core losses. The magnetic analysis and design considerations of the novel two phase SRM have been obtained by the finite element analysis (FEM). Experimental verification of the machine design is provided to correlate with analysis and simulation studies.

  • PDF

A Study on the Characteristics of Flow with Polymer Additives (고분자물질 첨가에 의한 유동특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

A CMOS Outphasing Transmitter Using Two Wideband Phase Modulators

  • Lee, Sung-Ho;Kim, Ki-Hyun;Song, Jae-Hoon;Lee, Kang-Yoon;Nam, Sang-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • This paper describes a CMOS outphasing transmitter using two wideband phase modulators. The proposed architecture can simplify the overall outphasing transmitter architecture using two-point phase modulation in phase-locked loop, which eliminates the necessity digital-to-analog converters, filters, and mixers. This architecture is verified with a WCDMA signal at 1.65 GHz. The prototype is fabricated in standard 130 nm CMOS technology. The measurement results satisfied the spectrum mask and 4.9% EVM performance.

Determination of Phase Converter Reactances for Monocyclic-start Induction Motor (모노사이클릭기동 유도전동기의 상변환기 리액턴스 결정)

  • Kim, Do-Jin;Jwa, Chong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.41-45
    • /
    • 2008
  • This paper describes a simple and straightforward method to determine phase converter reactances for the monocyclic start induction motor which have two different phase converters. In order to determine two reactances, two kinds of simultaneous equations with two unknown reactances at a specified speed are set up by the condition of balance operation. From these equation, these unknown reactances can be solved directly using the application software without any algebraic calculation. The applicability of this method is investigated by comparing with the known method by using the computed results at the starting and rated speed, and the results show good agreement each other. Using these results, the performance characteristics of this motor are computed and compared with three phase balance operation of induction motor.

Cultivation of Digitalis lanata Cell Suspension in an Aqueous Two-Phase System

  • Choi, Yeon-Sook;Lee, Sang-Yoon;Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.589-592
    • /
    • 1999
  • Suspension cultures of Digitalis lanata were successfully performed in an aqueous two-phase system (ATPS) of 4.5% polyethylene glycol (PEG) 20,000 and 2.8% crude dextran. Cell growth in the medium containing an individual ATPS-forming polymer was inhibited due to the toxicity of PEG and a high viscosity of dextran. Formation of ATPS supported cell growth by showing a considerably decrease in viscosity and partitioning of cells into a PEG-lean dextran phase. It was found that an aqueous two-phase cultivation of plant cells in a stirred tank bioreactor could be successfully applied.

  • PDF

Experimental Study of Two-step Phase-shifting Digital Holography based on the Calculated Intensity of a Reference Wave

  • Li, Jun;Pan, Yang Yang;Li, Jiao sheng;Li, Rong;Zheng, Tao
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.230-235
    • /
    • 2014
  • Two-step quadrature phase-shifting digital holography based on the calculated intensity of a reference wave is proposed. In the Mach-Zehnder interferometer (MZI) architecture, the method only records two quadrature-phase holograms, without reference-wave intensity or object-wave intensity measurement, to perform object recoding and reconstruction. When the reference-wave intensity is calculated from the 2D correlation coefficient (CC) method that we presented, the clear reconstruction image can be obtained by some specific algorithm. Its feasibility and validity were verified by a series of experiments with 2D objects and 3D objects. The presented method will be widely used in real-time or dynamic digital holography applications.

The Study on the Drag Reduction for Gas/Liquid Two Phase Flow (기-액(氣-液) 2상유동(二相流動)시 항력(抗力)에 관(關)한 연구(硏究))

  • Cha, K.O.;Oh, Y.K.;Kim, J.G.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.20-28
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with 24 m of the inner diameter and 1,500 mm of the length. The used polymer materials are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results were shown that the drag is higher reduced by co-polymer rather than polyanylamide.

  • PDF