• Title/Summary/Keyword: Two-Layer Model

Search Result 1,151, Processing Time 0.021 seconds

EVALUATION OF ELLIPTIC BLENDING MODEL (Elliptic Blending Model의 평가)

  • Choi Seok-Ki;Kim Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.105-110
    • /
    • 2005
  • Evaluation of elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The algebraic flux model is used for treating the turbulent heat flux. There exist much differences between turbulence models in predicting the temporal variation of temperature. The V2-F model and the EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect

  • Hao, W.U.;Yongpeng, O.U.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.510-520
    • /
    • 2019
  • To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.

Seepage Characteristics of Embankment as with/without Gravel Layer under the Earth Fill (성토층 하부의 자갈층 유·무에 따른 침투특성 변화)

  • Lee Haeng Woo;Chang Pyoung Wuck;Chang Woong Hee;Kim See-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.53-61
    • /
    • 2005
  • A series of laboratory tests was carried out fur analyzing of seepage characteristics of two-layers embankment model which consists of gravel and earth fill layers. Gravel layers were built under the earth fill for a half and one-third width of earth fill of the model. Permeability of earth fill was ranged between $5.00\times10^{-5}\~3.00\times10^{-4}\;m/s$.. The tests were performed with hydraulic gradients(i), $0.10\~0.55$. From the test results, hydraulic head of earth fill with gravel layer was 1.6 times higher than that of earth fill without gravel layer. Seepage rate was increased up to $4\~22$ times and safety factor for piping was decreased to $13\~43\;\%$ comparing the earth fill with gravel layer to that without gravel layer. The gravel layer under the earth fill could, in general, give some serious seepage problems to seadike embankment.

Evaluation of the K-Epsilon-VV-F Turbulence Model for Natural Convection in a Rectangular Cavity (직사각형 공동 내부 자연연대류 문제에 대한 k-epsilon-vv-f 난류모델의 평가)

  • Choi Seok-Ki;Kim Seong-O;Kim Eui-Kwang;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.4
    • /
    • pp.8-18
    • /
    • 2002
  • The primary objective of the present study is evaluation of the k-ε-vv-f turbulence model for prediction of natural convection in a rectangular cavity. As a comparative study, the two-layer k-ε model is also considered. Both models, with and without algebraic heat flux model, are applied to the analysis of natural convection in a rectangular cavity. The performances of turbulence models are investigated through comparison with available experimental data. The predicted results of vertical velocity component, turbulent heat fluxes, turbulent shear stress, local Nusselt number and wall shear stress are compared with experimental data. It is shown that, among the turbulence models considered in the present study, the k-ε-vv-f model with an algebraic heat flux model predicts best the vertical mean velocity and velocity fluctuation, and the inclusion of algebraic heat flux model slightly improves the accuracy of results.

Evaluation of Turbulence Models for Analysis of Thermal Striping (Thermal Striping 해석 난류모델 평가)

  • Choi Seok-Ki;Nam Ho-Yun;Wi Myung-Hwan;Eoh Jae-Hyuk;Kim Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.142-147
    • /
    • 2005
  • A numerical study of evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple jet flow with the same velocity but different temperature. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLE algorithm. The results of the present study show that the temporal oscillation of temperature is predicted only by the V2-f model, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. The the two-layer model and the SST model shows nearly the same capability of predicting the thermal striping and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

  • PDF

Contact analysis in functionally graded layer loaded with circular two punches

  • Muhammed T. Polat;Alper Polat
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.13-25
    • /
    • 2024
  • In this study, contact analysis in a functionally graded (FG) layer loaded with two circular punches is solved using the finite element method (FEM). The problem is consisted of a functionally graded layer that resting on an elastic semi-infinite plane and is loaded with two rigid punches of circular geometry. External loads P and Q are transferred to the layer via two rigid punches. The finite element model of the functionally graded layer is created using the ANSYS package program and a 2-dimensional analysis of the problem is analyzed. The contact lengths, obtained as a result of the analysis are compared with the analytical solution in the literature. In the study, the effects of parameters such as distances between punches, loads, inhomogenity parameter on contact zones, initial separation loads and distances, normal stresses, stresses across depth and contact stresses are investigated. As a result, in this study, it can be said that the magnitude of the stresses occurring in the FG layer is less than the homogeneous layer, therefore the life of FG materials will be longer than the homogeneous layer. When the distance between the punches is 2.25, the initial separation distance is 6.98, and when the distance between the punches is 4, the initial separation distance decreases to 6.10. In addition, when the load increased in the second punch, the initial separation load decreased from 55 to 18. The obtained results are presented in the form of graphs and tables.

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

HAMILTONIAN OF A SECOND ORDER TWO-LAYER EARTH MODEL

  • Selim, H.H.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.49-60
    • /
    • 2007
  • This paper deals with the theory for rotational motion of a two-layer Earth model (an inelastic mantle and liquid core) including the dissipation in the mantle-core boundary(CMB) along with tidal effects produced by Moon and Sun. An analytical solution being derived using Hori's perturbation technique at a second order Hamiltonian. Numerical nutation series will be deduced from the theory.

A COMPARATIVE STUDY ON BLOCKCHAIN DATA MANAGEMENT SYSTEMS: BIGCHAINDB VS FALCONDB

  • Abrar Alotaibi;Sarah Alissa;Salahadin Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.128-134
    • /
    • 2023
  • The widespread usage of blockchain technology in cryptocurrencies has led to the adoption of the blockchain concept in data storage management systems for secure and effective data storage and management. Several innovative studies have proposed solutions that integrate blockchain with distributed databases. In this article, we review current blockchain databases, then focus on two well-known blockchain databases-BigchainDB and FalconDB-to illustrate their architecture and design aspects in more detail. BigchainDB is a distributed database that integrates blockchain properties to enhance immutability and decentralization as well as a high transaction rate, low latency, and accurate queries. Its architecture consists of three layers: the transaction layer, consensus layer, and data model layer. FalconDB, on the other hand, is a shared database that allows multiple clients to collaborate on the database securely and efficiently, even if they have limited resources. It has two layers: the authentication layer and the consensus layer, which are used with client requests and results. Finally, a comparison is made between the two blockchain databases, revealing that they share some characteristics such as immutability, low latency, permission, horizontal scalability, decentralization, and the same consensus protocol. However, they vary in terms of database type, concurrency mechanism, replication model, cost, and the usage of smart contracts.

코팅 부동화 측정장치개발 및 부동화시간에 관한 연구

  • ;D. W. Bousfield
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.42-42
    • /
    • 2001
  • The rate of coating consolidation influences the operation of several coating methods and the final quality of the coating layer. The rate of coating consolidation is characterized with a dynamic gloss meter at short times for a thin coating layer applied to the base sheet of interest. During the coating consolidation process, the laser gloss meter response curve exhibits two critical turning points that indicate the two coating immobilization points defined by the traditional methods. Five base sheets with several different coating suspensions are characterized. A model is proposed to estimate the rate of consolidation based on physical properties of the coating suspension, the base paper, and the liquid phase of the coating. The paper properties, especially the contact angle, are found to be an important factor in determining rate of consolidation. The model predicts the correct trends for the different coating suspensions and base sheets. The test method, along the model, can be used to determine the filtercake resistance of the coating layer for a thin and rapidly formed filtercake.

  • PDF