• Title/Summary/Keyword: Two-Layer Model

Search Result 1,154, Processing Time 0.03 seconds

Thermal Conductivity Effect of Heat Storage Layer using Porous Feldspar Powder (다공질 장석으로 제조한 축열층의 열전도 특성)

  • Kim, Sung-Wook;Go, Daehong;Choi, Eun-Kyeong;Kim, Sung-Hwan;Kim, Tae-Hyoung;Lee, Kyu-Hwan;Cho, Jinwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.159-170
    • /
    • 2017
  • The temporal and spatial temperature distribution of the heat storage mortar made of porous feldspar was measured and the thermal properties and electricity consumption were analyzed. For the experiment, two real size chambers (control model and test model) with hot water pipes were constructed. Two large scale models with hot water pipes were constructed. The surface temperature change of the heat storage layer was remotely monitored during the heating and cooling process using infrared thermal imaging camera and temperature sensor. The temperature increased from $20^{\circ}C$ to $30^{\circ}C$ under the heating condition. The temperature of the heat storage layer of the test model was $2.0-3.5^{\circ}C$ higher than the control model and the time to reach the target temperature was shortened. As the distance from the hot water pipe increased, the temperature gap increased from $4.0^{\circ}C$ to $4.8^{\circ}C$. The power consumed until the surface temperature of the heat storage layer reached $30^{\circ}C$ was 2.2 times that of the control model. From the heating experiment, the stepwise temperature and electricity consumption were calculated, and the electricity consumption of the heat storage layer of the test model was reduced by 66%. In the cooling experiment, the surface temperature of the heat storage layer of the test model was maintained $2^{\circ}C$ higher than that of the control model. The heat storage effect of the porous feldspar mortar was confirmed by the temperature experiment. With considering that the time to reheat the heat storage layer is extended, the energy efficiency will be increased.

Analysis of Stratified Lake using an Eddy Diffusion and a Mixed-layer Models

  • Kim, Kyung-sub
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.111-123
    • /
    • 1997
  • A one-dimensional eddy diffusion model and a mixed-layer model are developed and applied to simulate the vertical temperature profiles in lakes. Also the running result of each method are compared and analyzed. In an eddy diffusion model, molecular diffusivity is neglected and eddy diffusivity which does not need lake-specific fitting parameter and constant lake's level are applied. The heat exchanges at the water surface and the bottom are formulated by the energy balance and zero energy gradient, respectively. In a mixed-layer model, two layers approach which has a constant thickness is adopted. The application of these models which use explicit finite difference and Runge-Kutta methods respectively demonstrates that the models simulate water temperatures efficiently.

  • PDF

High-Temperature Corrosion Characteristics of T22 and T92 Steel in SO2-Containing Gas at 650 ℃ (650 ℃의 SO2 가스 환경 하에서 T22와 T92 강의 고온 부식특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.285-291
    • /
    • 2019
  • In this study, the corrosion characteristics of T22 and T92 steel were investigated in 6O2 + 16CO2 + 2SO2 gas environment at 650 ℃. Corrosion characteristics were characterized by weight gain, oxide layer thickness, scanning electron microscope, optical microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. T22 and T92 steel tended to stagnate oxide layer growth over time. Oxidation kinetics were analyzed using the data of oxide layer thickness, and a regression model was presented. The regression model was significantly acceptable. The corrosion rate between the two steels through the regression model showed significant difference. The T92 steel was approximately twice as large as the time exponent and showed very good corrosion resistance compared to the T22 steel. In both steels, the oxide layer mainly formed a Fe-rich oxide layer composed of hematite (Fe2O3), magnetite (Fe3O4), and spinel (FeCr2O4). Sulfide segregation occurred in the oxide layer due to SO2 gas. However, the locations of segregation for the T22 and T92 steel were different.

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Natural Convection for Air-Layer between Clothing and Body Skin (의복과 인체의 공기층에 관한 자연대류 특성)

  • Ji, M.K.;Bae, K.Y.;Chung, H.S.;Jeong, H.M.;Chu, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.648-653
    • /
    • 2001
  • This study represents the numerical analysis of natural convection of a microenvironments with a air permeability in the clothing air-layer. The clothing air layer of shoulder and arm was used for numerical analysis model. As a numerical analysis method, we adopted a finite volume method for two-dimensional laminar flow, and analyzed the flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As a temperature boundary conditions, we considered that a body skin has a high temperature with $34^{\circ}C$ the environmental temperatures are $5,\;15\;and\;25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity were showed that two large cells were. formed at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decrease, the heat transfer was decreased rapidly.

  • PDF

Control of Boundary Layer Flow Transition via Distributed Reduced-Order Controller

  • Lee, Keun-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1561-1575
    • /
    • 2002
  • A reduced-order linear feedback controller, which is used to control the linear disturbance in two-dimensional plane Poiseuille flow, is applied to a boundary layer flow for stability control. Using model reduction and linear-quadratic-Gaussian/loop-transfer-recovery control synthesis, a distributed controller is designed from the linearized two-dimensional Navier-Stokes equations. This reduced-order controller, requiring only the wall-shear information, is shown to effectively suppress the linear disturbance in boundary layer flow under the uncertainty of Reynolds number. The controller also suppresses the nonlinear disturbance in the boundary layer flow, which would lead to unstable flow regime without control. The flow is relaminarized in the long run. Other effects of the controller on the flow are also discussed.

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.101-124
    • /
    • 2002
  • The convergence rate of a numerical procedure barred on Schwarz Alternating Method (SAM) for solving elliptic boundary value problems (BVP's) depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It hee been observed that the Robin condition(mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. Since the convergence rate is very sensitive to the parameter, Tang[17] suggested another interface condition called over-determined interface condition. Based on the over-determined interface condition, we formulate the two-layer multi-parameterized SAM. For the SAM and the one-dimensional elliptic model BVP's, we determine analytically the optimal values of the parameters. For the two-dimensional elliptic BVP's , we also formulate the two-layer multi-parameterized SAM and suggest a choice of multi-parameter to produce good convergence rate .

Hole Mobility Characteristics of Biaxially Strained SiGe/Si Channel Structure with High Ge Content (고농도의 Ge 함량을 가진 Biaxially Strained SiGe/Si Channel Structure의 정공 이동도 특성)

  • Jung, Jong-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.44-48
    • /
    • 2008
  • Hole mobility characteristics of two representative biaxially strained SiGe/Si structures with high Ge contents are studied, They are single channel ($Si/Si_{1-x}Ge_x/Si$ substrate) and dual channel ($Si/Si_{1-y}Ge_y/Si_{1-x}Ge_x/Si$ substrate), where the former consists of a relaxed SiGe buffer layer with 60 % Ge content and a tensile-strained Si layer on top, and for the latter, a compressively strained SiGe layer is inserted between two layers, Owing to the hole mobility performance between a relaxed SiGe film and a compressive-strained SiGe film in the single channel and the dual channel, the hole mobility behaviors of two structures with respect to the Si cap layer thickness shows the opposite trend, Hole mobility increases with thicker Si cap layer for single channel structure, whereas it decreases with thicker Si cap layer for dual channel. This hole mobility characteristics could be easily explained by a simple capacitance model.

Improvement on Large-Eddy Simulation Technique of Turbulent Flow (난류유동의 Large-Eddy Simulation 기법의 알고리즘 향상에 관한 연구)

  • 앙경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1691-1701
    • /
    • 1995
  • Two aspects of Large-Eddy Simulation(LES) are investigated in order to improve its performance. The first one is on how to determine the model coefficient in conjunction with a dynamic subgrid-scale model, and the second one is on a wall-layer model(WLM) which allows one to skip near-wall regions to save a large number of grid points otherwise required. Especially, a WLM suitable for a separated flow is considered. Firstly, an averaging technique to calculate the model coefficient of dynamic subgrid-scale modeling(DSGSM) is introduced. The technique is based on the concept of local averaging, and useful to stabilize numerical solution in conjunction with LES of complex turbulent flows using DSGSM. It is relatively simple to implement, and takes very low overhead in CPU time. It is also able to detect the region of negative model coefficient where the "backscattering" of turbulence energy occurs. Secondly, a wall-layer model based on a local turbulence intensity is considered. It locally determines wall-shear stresses depending on the local flow situations including separation, and yields better predictions in separated regions than the conventional WLM. The two techniques are tested for a turbulent obstacle flow, and show the direction of further improvements.rovements.