• Title/Summary/Keyword: Two-Fluid nozzle

Search Result 149, Processing Time 0.029 seconds

A Study on the Shell Wall Thinning by Flow Acceleration Corrosion and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (유동가속부식으로 인한 급수가열기 동체 감육현상 규명과 완화 방안 및 충격판 설계개선에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, In-Tae
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.83-93
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, four different types of impingement baffle plate-squared, curved, mitigating type and multi-hole type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type and multi-hole type baffle plate are more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.

Study of the Periodic Ludwieg Tube Flow with Heat Addition (가열을 수반하는 Ludwieg Tube 유동에 대한 연구)

  • Baek, S.C.;Kwon, S.B.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.450-455
    • /
    • 2001
  • The time-dependent behavior of nonequilibrium condensation of moist air through the Ludwieg tube is investigated with a computational fluid dynamics(CFD) method. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The computational results are compared with the previous experiments using the Ludwieg tube with a downstream diaphragm. The results clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to nonequilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity, and the periodic excursions of the condensation shock wave are responsible for the total pressure loss.

  • PDF

Study of Moist Air Flow Through the Ludwieg Tube

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong;Toshiaki Setoguchi;Sigeru Matsuo;Raghu S. Raghunathan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2066-2077
    • /
    • 2003
  • The time-dependent behavior of unsteady condensation of moist air through the Ludwieg tube is investigated by using a computational fluid dynamics (CFD) work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The predicted results are compared with the previous experiments using the Ludwieg tube with a diaphragm downstream. The present computations represent the experimental flows well. The time-dependent unsteady condensation characteristics are discussed based upon the present predicted results. The results obtained clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to unsteady condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity and it results from the periodic excursions of the condensation shock wave.

A Study on Experiment and Numerical Analysis for Disclosing Shell Wall Thinning of a Feedwater Heater (급수가열기 추기노즐 충격판 주변의 동체감육 현상규명을 위한 실험 및 수치해석 연구)

  • Kim, Kyung-Hoon;Lee, Woo;Hwang, Kyeong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.1-7
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test.

Preparation of α-Al2O3 Nanoparticles by flame Spray Pyrolysis (ESP) of Microemulsion (마이크로에멀전의 화염분무열분해(ESP)에 의한 α-알루미나 나노입자의 제조)

  • 이상진;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.242-246
    • /
    • 2004
  • Nano-sized a-alumina with a narrow distribution was prepared by using Flame Spray Pyrolysis (FSP). The microemulsion of water in oil (W/O) was prepared to make ultrafine droplets for FSP process. Kerosene (fuel) as a continuos phase and Al(NO$_3$)$_3$$.$9$H_2O$ (oxidizer) aqueous solution as a dispersed phase were prepared for microemulsification. The microemulsion with dispersion stability was obtained by adjusting the composition of 80 vol% kerosene, 10 vol% aqueous solution, and 10 vol% emulsifying agent. Microemulsion was sprayed onto the flame by using two-fluid nozzle spray gun under the condition of 0.03 ㎫ air pressure. The synthesized products were $\alpha$-alumina phase with the size of 20 to 30 nm.

Design of the Air Pressure Pick-up Head for Non-Contact Wafer Gripper (비접촉식 웨이퍼 그리퍼용 공압 파지식 헤드 설계)

  • Kim, Joon-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.401-407
    • /
    • 2012
  • The recent manufacturing process in the thin wafers and flat panel necessitate new approaches to reduce handling fragile and surface-sensitive damage of components. This paper presents a new pneumatic levitation for non-contact handling of parts and substrates. This levitation can achieve non-contact handling by blowing air into an air pressure pick-up head with radial passages to generate a negative pressure region. Negative pressure is caused by the radial air flow by nozzle throat and through holes connecting to the bottom region. The numerical analysis deals with the levitational motion with different design factors. The dynamic motion is examined in terms of force balance(dynamic equilibrium) occurring to the flow field between two objects. The stable equilibrium position and the safe separation distance are determined by analyzing the local pressure distribution in the fluid motion. They make considerable design factors consisting the air pressure pick-up head. As a result, in case that the safe separation distance is beyond 0.7mm, the proposed pick-up head can levitate stably at the equilibrium position. Furthermore, it can provide little effect of torque, and obtain more wide picking region according to the head size.

Shell Wall Thinning and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 동체 감육 현상과 완화 방안 및 충격판 설계개선)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Park, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.55-63
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, three different types of impingement baffle plate-squared, curved and mitigating type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type baffle plate is more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY (사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석)

  • Kim, H.J.;Kang, G.U.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System (이류체 포그 냉방시스템의 제어알고리즘 개발)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 2013
  • In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.