• Title/Summary/Keyword: Two-Equation Turbulence Model

Search Result 203, Processing Time 0.022 seconds

Three-Dimensional Numerical Simulation within a Circular-to-Rectangular Transition Duct (Circular-to-Rectangular Transition Duct 내부의 3차원 유동장에 관한 연구)

  • Jo, Su-Yong;Jeong, Hui-Taek;Son, Ho-Jae
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 1998
  • Predictive behaviors by the extended k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ turbulence model are compared. Grid dependency is tested with the H-type grid as well as the O-type grid. Computations have been performed on a circular-to-rectangular transition duct. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, peripheral wall static pressure distributions and turbulence kinetic energy have been compared with experimental results. The computed results than those obtained with the standard k-${\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid seem to agree well with experimental results.

  • PDF

Numerical Studies on Soot Formation Characteristics of Turbulent Non-premixed and Partially Premixed Flames (난류 비예혼합 및 부분예혼합 화염장에서 매연입자의 생성특성 해석)

  • Kim, Taehoon;Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.141-143
    • /
    • 2012
  • The present study is aiming at numerically analyze the soot formation processes coupled with gas reaction mechanism in turbulent non-premixed and partially premixed flames. In order to realistically represent turbulence-chemistry interactions with detailed chemical kinetics and soot formation behaviour related to the turbulent non-premixed and partially premixed flames, the transient flamelet[1] and flamelet based level-set approach[2] are coupled with soot formation based on the two equation model [3] and DQMOM (Direct Quadrature Method of Moment)[4].

  • PDF

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.27-32
    • /
    • 1999
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit four-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations are discretized with exploit finite difference method. Mixed-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-$\omega$ turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

NUMERICAL SIMULATION OF SUPERSONIC FLOW USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS (다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 과한 경계조건을 이용한 초음속 흐름의 수치모사)

  • Kwak, E.K.;Yoo, I.Y.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.104-111
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, the boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Using the newly modified code, numerical simulations were performed and compared with other computational results as well as the experimental data for the supersonic flows over an oblique shock with a bleed region.

  • PDF

NUMERICAL SIMULATIONS OF SUPERSONIC FLOWS USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS (다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 관한 경계조건을 이용한 초음속 흐름의 수치모사)

  • Kwak, E.K.;Yoo, I.Y.;Lee, D.H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Furthermore, numerical simulations for supersonic shock boundary layer interaction with a bleed region were performed and their results were compared with the existing computational results.

Numerical Study on k-$\omega$ Turbulence Models for Supersonic Impinging Jet Flow Field (초음속 충돌 제트 운동에 대한 k-$\omega$ 난류모델의 적용)

  • Kim E.;Park S. H.;Kwon J. H.;Kim S. I.;Park S. O.;Lee K. S.;Hong S. G.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.30-35
    • /
    • 2004
  • A numerical study of underexpanded jet and impingement on a wall mounted at various distances from the nozzle exit is presented. The 3-dimensional Wavier-Stokes equations and κ-ω turbulence equations are solved. The grids are constructed as overlapped grid systems to examine the distance effect. The DADI method is applied to obtain steady-state solutions. To avoid numerical instability such as the carbuncle phenomena that sometimes accompany approximate Riemann solver, the HLLE+ scheme is employed for the inviscid flux at the cell interfaces. A goal of this work is to apply a number of two-equation turbulence models based on the w equation to the impinging jet problem.

Numerical Study of slot injection into turbulent supersonic flow on adaptive meshes (적응 격자계를 이용한 초음속 난류유동장의 측면제트분사에 대한 수치적연구)

  • Kim J. R.;Kim I. T.;Kim J. S.
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 2001
  • Two-dimensional steady flowfields generated by slot injection into supersonic flow are numerically simulated by the integration of Navier-stokes equation with two-equation κ-turbulence model. High-order upwind scheme is used on unstructured adaptive meshes. The numerical results are compared with experimental data in terms of surface static pressure distributions, the length of the upstream separation region, and the height of the Mach surface for steady flowfields with a Mach number of 3.71 and a unit Reynolds number of 5.83×10/sup 6//m.

  • PDF

On the Assessment of Compressibility Effects of Two-Equation Turbulence Models for Supersonic Transition Flow with Flow Separation

  • Sung, Hong-Gye;Kim, Seong-Jin;Yeom, Hyo-Won;Heo, Jun-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.387-397
    • /
    • 2013
  • An assessment of two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and k-${\omega}$ SST models, with the compressibility corrections proposed by Sarkar and Wilcox, has been performed. The compressibility models are evaluated by investigating transonic or supersonic flows, including the arc-bump, transonic diffuser, supersonic jet impingement, and unsteady supersonic diffuser. A unified implicit finite volume scheme, consisting of mass, momentum, and energy conservation equations, is used, and the results are compared with experimental data. The model accuracy is found to depend strongly on the flow separation behavior. An MPI (Message Passing Interface) parallel computing scheme is implemented.

Comparison study of turbulent diffusion coefficient using Smagorinsky method and 2-level method (Smagorinsky method와 2-level method를 이용한 난류 확산계수의 비교 연구)

  • 이화운;오은주;정우식;최현정;임주연
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.679-686
    • /
    • 2002
  • Turbulence greatly influence on atmospheric flow field. In the atmosphere, turbulence is represented as turbulent diffusion coefficients. To estimate turbulent diffusion coefficients in previous studies, it has been used constants or 2-level method which divides surface layer and Ekman layer. In this study, it was introduced Smagorinsky method which estimates turbulent diffusion coefficient not to divide the layer but to continue in vertical direction. We simulated 3-D flow model and TKE equation applied turbulent diffusion coefficients using two methods, respectively. Then we showed the values of TKE and the condition of each term to TKE. The results of Smagorinsky method were reasonable. But the results of 2-level method were not reasonable. Therefor, it had better use Smagorinsky method to estimate turbulent diffusion coefficients. We are expected that if it is developed better TKE equation and model with study of computational method in several turbulent diffusion coefficients for reasonably turbulent diffusion, we will able to predict precise wind field and movements of air pollutants.

A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere (중립 대기 상태에서 이상 난류유동에 관한 수치적 연구)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.772-778
    • /
    • 2002
  • A numerical analysis of turbulent gas-particle two-phase flow is performed in conjunction with the experiments of Fackrell & Robins and Raupach & Legg that considered ground-level source and/or elevated source flat plate flow. K-$\omega$ turbulence model is used in order to analyze fully turbulent flow field and the concentration equation with settling velocity is adopted for the concentration field. The model of Einstein and Chien is applied that couples the velocity field and the concentration field. Turbulent eddy viscosity is re-evaluated in this model. The present numerical results have good agreement between the simulation and the experimental data for the mean flow velocities and particle concentrations. While the previous study shows about 27% error in the vicinity of the source of particle concentration, the .present study allows about 14% error. A new turbulent gas-particle flow model developed by this study is able to cut down error by 13% at a near source.