• Title/Summary/Keyword: Two-Dimension materials

Search Result 137, Processing Time 0.023 seconds

Simulation of Small Clusters(II) -Geometries and Energies of$C_6-C_10$- (탄소 클러스터들에 관한 시뮬레이션(II) -$C_6-C_10$의 구조와 에너지-)

  • Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.95-100
    • /
    • 1992
  • The bond lengths, bond angles and energies of $C_6$ clusters are calculated by using the simulation technique based on some semiempirical potential energy functions, with the result that the equilibrium configuration of $C_6$ is a regular equilateral hexagon. The same simulations have been performed for linear and cyclic forms of $C_7-C_10$ clusters and the results show that the regular heptagonal, octagonal, nonagonal and decagonal forms are more stable than the linear forms of the respective clusters. Comparison of this result with the present author's previous result that the most stable configurations of $C_2-C_5$ are linear implies that the most stable configuration of the cluster changes from one-dimension al to two-dimensional one as the cluster size increases and that the critical cluster size is $C_6$.

  • PDF

Influence of Water Infiltration and Flexural Strength Change with Glazing Treatment of Dental Porcelain (치과도재의 Glazing 여부에 따른 수분침투 정도와 굽힘강도에 미치는 영향)

  • Lee, Ju-Hee;Lee, Chae-Hyun;Song, Jeong-Hwan
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of water infiltration and flexural strength changes in dental porcelain with glazing treatment. The block specimens were prepared as experimental materials, using feldspar type commercial dental porcelain; then, these were fired at $940^{\circ}C$ for 1 minute. The fired specimens were polished with a dimension of $40{\times}5.5{\times}5mm$. The specimens were distributed to two experimental groups: with and without glazing treatment specimens (n=5), and they were immersed in a solution of pH 7 for 3, 7, and 20 days at $40^{\circ}C$ after fabrication. To evaluate the flexural strength changes with water infiltration treatment in specimens with and without glazing, the 3-point flexural test was performed, using a universal testing machine until failure occurred. Starting powder and fired specimens consisted of amorphous and leucite crystalline phase. The Vickers hardness of fired specimens was more than 1.6 times higher than that of the enamel of natural teeth. According to porosimeter results, the specimens without glazing treatment exhibited a porosity of about 14.7%, whereas the glazed specimens exhibited the lowest porosity at about 1.1%. The average flexural strength of glazed specimens was higher than the flexural strength of specimens without glazing treatment (p<0.05). The flexural strength of all specimens with and without glazing treatment deteriorated with accelerated aging in the solution. In addition, significant differences between these two treatment groups were observed in all of the specimens treated at various water infiltration periods (p<0.05). The exposure of internal pores and micro-cracks in the surface due to polishing of the fired specimens influenced mechanical behaviors. Especially, the flexural strength in specimens without glazing treatment has shown significant degradation with the infiltration of water. Therefore, this study suggests that glazing processes can improve mechanical properties of dental porcelain.

광미적치장 사면의 안정성 해석 및 대책

  • Song, Won-Gyeong;Han, Gong-Chang;Sin, Jung-Ho
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.123-134
    • /
    • 1998
  • To analyse the stability of a slope composed of waste material produced in a closed lead mine, numerical modeling has been carried out in two dimension using FLAC, finite difference program. The research was focused on the effect of the earthquake as well as a rise of water table upon slope stability. The numerical results have shown that the slope would not be safe against earthquake event and that the increase of pore pressure due to a rise of water table up to the ground level may result in a failure of the slope. On the basis of numerical analyses and site investigation, two sorts of measures have been taken. In short term, removal of a part of materials deposited on the top of the pile is required to increase immediately safety factor of the slope even a little. In ling term, it is necessary to repair drainage facilities and dam which covers waste material so that the slope is prevented from failure in a radical manner. It has been confirmed by numerical analyses that an improvenment of the stability can be in a great extent expected after such measures have been performed.

  • PDF

A Comparison of Self-Reported Fatigue and Fatigue-Regulating Behaviors of Rheumatoid Arthritic Patients and Normal Persons (류마티스관절염 환자와 정상인의 피로도 및 피로조절행위 비교)

  • Jung, Bok-Hee;Kim, Myung-Ae
    • Journal of muscle and joint health
    • /
    • v.6 no.1
    • /
    • pp.51-72
    • /
    • 1999
  • The purpose of this study is to compar self-reported fatigue and fatigue-regulating behaviors of rheumatoid arthritic patients and normal persons. This study collected the data from 75 rheumatoid arthritic patents visited the departments of internal medicine or orthopedics of four general hospitals T-city and K-city by means of direct interview and questionnaires. in this study also collected data from 75 normal persons who had not been exposed to any other disease in T-city and K-city by means of direct interviews anti questionnaires which were conducted by two trained nurses. This experiment was conducted from August 1, 1998 to October 15, 1998. This study used both MAP(Multi-Dimentional Assessment of Fatigue) developed by Belza(1995) to measure fatigue and the measurement developed by Kwon, Young-Eun to investigate fatigue regulating behaviors. The collected materials were analyzed by means of descriptive statistics, t-test, and the ANCOVA according to the SPSS PC+ program. The findings are as follows : 1. There was the statistically significant difference(t =5.07, p=.000), between rheumatoid arthritic patients(32.76 points) and normal persons(25.81 points) in t-test comparison by group about fatigue. A fatigue degree of rheumatoid arthritic patient group was high in five kinds of lower realms such as common fatigue degree, fatigue severity to be experienced, distress due to fatigue, daily fatigue degree, and fatigue timing at the last week by dimension. 2. There was the significant difference in the number of fatigue-regulating behaviors between rheumatoid of fatigue arthritic patients(9.37 times) and normal persons (8.15 times), but there wasn't any significant difference in the efficiency between rheumatoid arthritic patients(2.85 points) and normal persons (2.78 points) This research suggests two kinds of things as follows : 1. It is necessary to develop an educational program for improving efficiency of fatigue-regulating behaviors as well as some nursing arbitration measures for reducing fatigue of rheumatoid arthritic patients. 2. It is necessary for the future studies to continuously grasp characteristics of fatigue by gender variable by selecting more rheumatoid arthritic male patients.

  • PDF

Tensile Properties and Thermal Stability of Cellulose Nanofibril/Clay Nanocomposites

  • Park, Byung-Dae;Singh, Adya P.;Um, In Chul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • This work attempted to fabricate organic/inorganic nanocomposite by combining organic cellulose nanofibrils (CNFs), isolated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation of native cellulose with inorganic nanoclay. The morphology and dimension of CNFs, and tensile properties and thermal stability of CNF/clay nanocomposites were characterized by transmission electron microscope (TEM), tensile test, and thermogravimetry (TG), respectively. TEM observation showed that CNFs were fibrillated structure with a diameter of about $4.86{\pm}1.341nm$. Tensile strength and modulus of the hybrid nanocomposite decreased as the clay content of the nanocomposite increased, indicating a poor dispersion of CNFs or inefficient stress transfer between the CNFs and clay. The elongation at break increased at 1% clay level and then continuously decreased as the clay content increased, suggesting increased brittleness. Analysis of TG and derivative thermogravimetry (DTG) curves of the nanocomposites identified two thermal degradation peak temperatures ($T_{p1}$ and $T_{p2}$), which suggested thermal decomposition of the nanocomposites to be a two steps-process. We think that $T_{p1}$ values from $219.6^{\circ}C$ to $235^{\circ}C$ resulted from the sodium carboxylate groups in the CNFs, and that $T_{p2}$ values from $267^{\circ}C$ to $273.5^{\circ}C$ were mainly responsible for the thermal decomposition of crystalline cellulose in the nanocomposite. An increase in the clay level of the CNF/clay nanocomposite predominately affected $T_{p2}$ values, which continuously increased as the clay content increased. These results indicate that the addition of clay improved thermal stability of the CNF/clay nanocomposite but at the expense of nanocomposite's tensile properties.

  • PDF

Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moosavi, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The biaxial failure mechanism of transversally bedding concrete layers was numerically simulated using a sophisticated two-dimensional discrete element method (DEM) implemented in the particle flow code (PFC2D). This numerical modelling code was first calibrated by uniaxial compression and Brazilian testing results to ensure the conformity of the simulated numerical model's response. Secondly, 21 rectangular models with dimension of $54mm{\times}108mm$ were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness were chosen in models, i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that in all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be noted that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.

REGIONAL MICRO-SHEAR BOND STRENGTH TO DENTIN:EFFECTS OF DENTINAL HARDNESS, POSITION, AND REMAINING DENTIN THICKNESS (상아질의 경도, 위치 및 잔존 상아질 후경이 상아질에 대한 부위별 미세 전단결합강도에 미치는 영향)

  • Hwang, Seon-Seong;Im, Mi-Kyung;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.401-412
    • /
    • 1998
  • The aim of this study was to measure the regional micro-shear bond strength of dentin bonding agents to dentin, and to investigate the relationship between the micro-shear bond strength and two dentinal characteristics ; Vickers hardness and remaining dentin thickness. Twenty-four freshly extracted, noncarious human molars were selected for this study. The materials tested in this study consisted of two commercially available dentin bonding agents (MAC-BOND, ONE-STEP) and two restorative light-cured composite resins (AELITEFIL, Z100). The occlusal or side surface of tooth crown was sectioned to expose dentin, and the exposed surface was finally polished with # 600 sandpaper. Four groups of application methods were used combining the filling materials and the dentin bonding agents. The composite resin-attached tooth specimens were embeded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of 1mm $\times$ 1mm. Nine specimens were obtained from each tooth. The cut specimens were divided into three groups depending on the position of the dentin bonding surface. The micro-shear bond strength, remaining dentin thickness, and dentinal hardness were measured. Experimental results were then statistically analyzed with ANOVA. t-test, Scheffe test, and regression analysis. From this experiment, the following results were obtained : 1. In the case of occlusal surface bonding, the pooled micro-shear bond strength of ONST-AELIT group (16.62 MPa) was significantly higher than that of MACB-AELIT group (9.91 MPa) (p<0.05). However, there was no significant difference in the micro-shear bond strength depending on the dentin position (p>0.05). 2. In the case of side surface bonding of crown, the pooled micro-shear bond strength of four different bonding groups was not significantly different among each other (p>0.05). However, in three of the test groups (ONST-AELIT, MACB-Z100, ONST-Z100), the micro-shear bond strength to the lower 1/3(III) position was significantly lower than that to middle 1/3(II) position of surface (p<0.05). 3. In the ONST-AELIT bonding group, the pooled micro-shear bond strength to the occlusal surface was significantly lower than that to the side surface of crown (p<0.05). 4. There was no significant correlation between the micro-shear bond strength and dentin hardness / remaining dentin thickness (p>0.05).

  • PDF

Morphometric Characteristic between Diploid and Spontaneous Triploid Carp in Korea

  • Lim, Sang Gu;Han, Hyeng Keun;Goo, In Bon;Gil, Hyun Woo;Lee, Tae Ho;Park, In-Seok
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • We used flowcytometry to ploidy verification after that investigate difference between diploid and spontaneous triploid through the truss dimension and classical dimension at crucian carp, Carassius auratus, crucian carp C. cuvieri and common carp, Cyprinus carpio collected from Hangang river, Hantangang river, Imjingang river, Geumgang river, Yeongsangang river and Nakdonggang river, Korea. There were significant differences among the three species for the truss dimensions anterior origin of dorsal fin $(2){\times}$ anterior origin of anal fin (5), $2{\times}$ anterior origin of pelvic fin (6), $2{\times}$ origin of pectoral fin (7), posterior origin of dorsal fin $(3){\times}5$, $3{\times}6$, and $3{\times}7$ (P<0.05). There were no significant differences among the three species in the truss dimensions dorsal fin length ($2{\times}9$) and eye diameter (ED)(P>0.05). On the other hand, there were no significant differences in the several classical dimensions of each species (P>0.05). Three classical dimensions, most anterior extension of the head $(1){\times}2$, $1{\times}6$ and $2{\times}$ most posterior scale in lateral line (4) did not differ between the C. auratus diploid and spontaneous triploid (P>0.05). Two classical dimensions, $1{\times}6$ and longest length between most anterior extension of the head and gill cover ($1{\times}8$) did not differ between the C. cuvieri diploid and spontaneous triploid (P>0.05). One classical dimensions, $1{\times}2$ did not differ between the common carp diploid and spontaneous triploid (P>0.05). There were significant differences in the each diploid and triploid species (P<0.05). These results suggest that the classification of each species and classification between diploid and spontaneous triploid morphometrical parameters used in this study are useful indices of morphometrical status in the each species from major river of Korea.

Evaluation on In-Site Compressive Strength of High-Strength Concrete Mass Elements under Cold Weather (혹한기 고강도 콘크리트 매스부재의 현장 압축강도 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Do-Gyeu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.589-595
    • /
    • 2015
  • This study evaluated the in-site compressive strength development of high-strength concrete developed for the mass structures under cold weather condition. Two mock-up wall specimens with $2.0{\times}1.2{\times}1.0m$ in dimension were cured under an average temperature of $5^{\circ}C$. Core strengths measured at different locations of the mock-up walls were compared with the companion standard cylinder strengths. Test results revealed that the core strength of mock-up walls at an age of 3 days is higher by approximately 30% than the companion cylinder strength because of the high curing temperature effect generated from the heat of hydration of cementitious materials. Furthermore, comparisons with the prediction models based on maturity function confirmed that the effect of hydration heat on the curing temperature increase needs to be reflected to reasonably evaluate the on-site compressive strength development of concrete for mass elements.

Prediction of Compressive Behavior of FRP-Confined Concrete Based on the Three-Dimensional Constitutive Laws (3차원 구성관계를 고려한 FRP-구속 콘크리트의 압축거동 예측모델)

  • Cho Chang-Geun;Kwon Min-ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.501-509
    • /
    • 2004
  • The proposed model can predict the compressive behaviors of concrete confined with fiber reinforced polymer (FRP) jacket. To model confining concrete by FRP jackets, the hypoelasticity-based constitutive law of concrete In tri-axial stress states has been presented. The increment of strength of concrete has been determined by the failure surface of concrete in tri-axial states, and its corresponding peak strain is computed by the strain enhancement factor that is proposed in the present study, Therefore, the newly proposed model is a load-dependent confinement model of concrete wrapped by FRP jackets to compare the previous models which are load-independent confinement models. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimension. The developed model is implemented into the incremental analysis of compressive tests. The verification study with several different experiments shows that the model is able to adequately capture the behavior of the compression test by including better estimations of the axial responses as well as the lateral response of FRP-confined concrete cylinders.