Browse > Article
http://dx.doi.org/10.12989/sem.2019.69.1.011

Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials  

Haeri, Hadi (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University)
Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
Zhu, Zheming (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University)
Moosavi, Ehsan (Department of Mining Engineering, Islamic Azad University)
Publication Information
Structural Engineering and Mechanics / v.69, no.1, 2019 , pp. 11-20 More about this Journal
Abstract
The biaxial failure mechanism of transversally bedding concrete layers was numerically simulated using a sophisticated two-dimensional discrete element method (DEM) implemented in the particle flow code (PFC2D). This numerical modelling code was first calibrated by uniaxial compression and Brazilian testing results to ensure the conformity of the simulated numerical model's response. Secondly, 21 rectangular models with dimension of $54mm{\times}108mm$ were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness were chosen in models, i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that in all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be noted that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.
Keywords
transversely bedding layer; biaxial strength; PFC2D;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870.   DOI
2 Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308.   DOI
3 Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952.   DOI
4 Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653.   DOI
5 Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinic., 29(5), 555-566.   DOI
6 Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
7 Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65.   DOI
8 Dai, Z., Ren, H., Zhuang, X. and Rabczuk, T. (2016), "Dual-support smoothed particle hydrodynamics for elastic mechanics", Int. J. Comput. Meth., 14(4), 1750039.   DOI
9 Dinh, Q.D., Heinz, K. and Martin, H. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7.   DOI
10 Ghazvinian, A., Vaneghi, R.G., Hadei, M.R. and Azinfar, M.J. (2013), "Shear behavior of inherently anisotropic rocks", Int. J. Rock Mech. Min. Sci., 61, 96-110.   DOI
11 Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754.   DOI
12 Haeri, H. (2015), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496.   DOI
13 Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.   DOI
14 Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737.   DOI
15 Kulatilake, P.H.S.W., Malama, B. and Wang, J.L. (2001), "Physical and particle flow modeling of jointed rock block behavior under uniaxial loading", Int. J. Rock Mech. Min. Sci. 38(5), 641-657.   DOI
16 Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416.   DOI
17 Hazzard, J.F. and Young, R.P. (2000), "Simulation acoustic emissions in bonded-particle models of rock", Int. J. Rock Mech. Min. Sci., 37, 867-872.   DOI
18 Itasca Consulting Group, Inc. (2004), Particle Flow Code in 2-Dimensions: Problem Solving with PFC2D, Version 3.1, Itasca Consulting Group, Inc., Minneapolis.
19 Jiang, Q., Feng, X.T., Hatzor, Y.H., Hao, X.J. and Li, S.J. (2014), "Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan hydropower station", Chin. Eng. Geol., 175, 35 45.   DOI
20 Khanlari, G.R., Heidari, M., Sepahigero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol. 169, 80-90.   DOI
21 Labiouse, V. and Vietor, T. (2014), "Laboratory and in situ simulation tests of the excavation damaged zone around galleries in Opalinus clay", Rock Mech. Rock Eng., 47(1), 57-70.   DOI
22 Lambert, C., Buzzi, O. and Giacomini, A. (2010), "Influence of calcium leaching on the mechanical behavior of a concrete-mortar interface: A DEM analysis", Comput. Geotech., 37(3), 258-266.   DOI
23 Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277.   DOI
24 Ren, H., Zhuang, X., Cai, Y. and Rabczuk, T. (2016), "Dual-horizon peridynamics", Int. J. Numer. Meth. Eng., 108(12), 1451-1476.   DOI
25 Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
26 Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364.   DOI
27 Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343.   DOI
28 Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799.   DOI
29 Rabczuk, T., Zi, G., Bordas, S. and Hung, N.X. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Meth. Appl. Mech. Eng., 199(37-40), 2437-2455.   DOI
30 Saeidi, O., Stille, H. and Torabi, R.S. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Space Technol., 38, 11-25.   DOI
31 Sagong, M., Park, D., Yoo, J. and Lee, J.S. (2011), "Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression", Int. J. Rock Mech. Min. Sci., 48(7), 1055-1067.   DOI
32 Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498.   DOI
33 Min, K.B. and Jing, L. (2003), "Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method", Int. J. Rock Mech. Min. Sci., 40(6), 795-816.   DOI
34 Liang, Z.Z., Tang, C.A., Li, H.X., Xu, T. and Yang, T.H. (2005), "A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression", Rock Soil Mech., 26(1), 57-62.   DOI
35 Lisjak, A., Grasselli, G. and Vietor, T. (2014a), "Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales", Int. J. Rock Mech. Min. Sci., 65, 96-115.   DOI
36 Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77.   DOI
37 Moradian, Z.A., Ballivy, G., Rivard, P., Grave, L.C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emission", Int. J. Rock Mech. Min. Sci., 47(4), 590-598.   DOI
38 Park, B. and Min, K.B. (2015), "Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 76, 243-255.   DOI
39 Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions", Geosyst. Eng., 18(1), 1-28.   DOI
40 Lei, M.F., Peng, L.M., Shi, C.H. and Wang, S.Y. (2013), "Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack", Tunn. Undergr. Space Technol., 36, 5-13.   DOI
41 Wang, Y.T., Zhou, X.P. and Shou, Y.D. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643.   DOI
42 Sarfarazi, V., Faridi, H. R., Haeri, H. and Schubert, W. (2016), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284   DOI
43 Seeska, R., Lux, K.H. and Hesser, J.B.B. (2011), Experiment: Long Term Deformation Behavior of Boreholes, Mont Terri Technical Note TN 2011-04. Switzerland, Saint Ursanne.
44 Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47(2), 313-322.   DOI
45 Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156.   DOI
46 Vietor, T., Li, X.L., Chen, G.J., Verstricht, J., Fisch, H. and Fierz, T. (2010), Small Scale in Situ Tests: Bore-Hole Experiments at HADES and Mont Terri Concrete Laboratories, Deliverable 8, TIMODAZ Project.
47 Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354.   DOI
48 Wang, Y.T., Zhou, X.P. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273.   DOI
49 Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549.   DOI
50 Wasantha, P.L.P., Ranjith, P.G., Xu, T., Zhao, J. and Yan, Y.L. (2014), "A new parameter to describe the persistency of non-persistent joints", Eng. Geol., 181, 71-77.   DOI
51 Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels- experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760.   DOI
52 Sun, J.P., Zhao, Z.Y. and Zhang, Y. (2011), "Determination of three dimensional hydraulic conductivities using a combined analytical/neural network model", Tunn. Undergr. Space Technol., 26(2), 310-319.   DOI
53 Tang, C.A. (1997), "Numerical simulation on progressive failure leading to collapse and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-262.   DOI
54 Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y. and Tham, L.G. (2000), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression part I: Effect of heterogeneity", Int. J. Rock Mech. Min. Sci., 37(4), 555-569.   DOI
55 Yun, T.S., Jeong, Y.J., Kim, K.Y. and Min, K.B. (2013), "Evaluation of rock anisotropy using 3D Xray computed tomography", Eng. Geol., 163, 11-19.   DOI
56 Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139.   DOI
57 Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou Metal Mine in China", Tunn. Undergr. Space Technol., 48, 129-139.   DOI
58 Yu, C., Deng, S.C., Li, H.B., Li, J.C. and Xia, X. (2013), "The anisotropic seepage analysis of water sealed underground oil storage caverns", Tunn. Undergr. Space Technol., 38, 26-37.   DOI
59 Zhang, Q., Zhu, H.H., Zhang, L.Y. and Ding, X.B. (2011b), "Study of scale effect on intact rock strength using particle flow modeling", Int. J. Rock Mech. Min. Sci., 48(8), 1320-1328.   DOI
60 Zhang, Z.X., Hu, X.Y. and Scott, K.D. (2011a), "A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils", Comput. Geotech., 38(1), 94-104.   DOI
61 Zhou, X.P. (2010), "Dynamic damage constitutive relation of mesoscopic heterogenous brittle rock under rotation of principal stress axes", Theoret. Appl. Fract. Mech., 54(2), 110-116.   DOI
62 Zhou, X.P, Xia, E.M., Yang, H.Q. and Qian, Q.H. (2012), "Different crack sizes analyzed for surrounding rock mass around underground caverns in Jinping I hydropower station", Theoret. Appl. Fract. Mech., 57(1), 19-30.   DOI
63 Zhou, X.P., Zhang, Y.X. and Ha, Q.L. (2008), "Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading", Theoret. Appl. Fract. Mech., 50(1), 49-56.   DOI
64 Zhou, X.P., Shou, Y.D., Qian, Q.H. and Yu, M.H. (2014), "Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method", Int. J. Rock Mech. Min. Sci., 72, 54-60.   DOI
65 Zhou, X.P. and Bi, J. (2018), "Numerical simulation of thermal cracking in rocks based on general particle dynamics", J. Eng. Mech., 144(1), 04017156.   DOI