• Title/Summary/Keyword: Two-Degrees-of-Freedom

검색결과 453건 처리시간 0.028초

전자석의 자기력 제어를 이용한 구형 3 자유도 액추에이터의 설계 및 제어 (Design and Control of 3 D.O.F. Spherical Actuator Using the Magnetic Force of the Electromagnets)

  • 백윤수;양창일;박준혁
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1341-1349
    • /
    • 2001
  • In this paper, 3 D.O.F. actuator, which has three degrees of freedom in one joint, is proposed. The proposed 3 D.O.F. spherical actuator is composed of the rotor and atator. The upper plate of the stator supports the rotor and five electromagnets are located at the base of the stator. The rotor has two permanent magnets, and each rotational axis of the rotor gimbal system is supported by the bearing. To find out the governing equations for the torque generation, Coulombs law and Lorentz force with respect to magnetism is applied. As the experimental results, if the distance between electromagnet and permanent maget is far enough, the force between these magnets can be expressed from current of coils and z-axial distance. For the purpose of control 3 D.O.F. actuator, PID control law is applied. The experimental results are presented to show the validity of the proposed 3 D.O.F. actuator.

인터넷 환경에서 힘반영을 이용한 이동로봇의 원격제어 (Internet-based Teleoperation of a Mobile Robot with Force-reflection)

  • 진태석;임재남;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.585-591
    • /
    • 2003
  • A virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

Effects of size-dependence on static and free vibration of FGP nanobeams using finite element method based on nonlocal strain gradient theory

  • Pham, Quoc-Hoa;Nguyen, Phu-Cuong
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.331-348
    • /
    • 2022
  • The main goal of this article is to develop the finite element formulation based on the nonlocal strain gradient and the refined higher-order deformation theory employing a new function f(z) to investigate the static bending and free vibration of functionally graded porous (FGP) nanobeams. The proposed model considers the simultaneous effects of two parameters: nonlocal and strain gradient coefficients. The nanobeam is made by FGP material that exists in un-even and logarithmic-uneven distribution. The governing equation of the nanobeam is established based on Hamilton's principle. The authors use a 2-node beam element, each node with 8 degrees of freedom (DOFs) approximated by the C1 and C2 continuous Hermit functions to obtain the elemental stiffness matrix and mass matrix. The accuracy of the proposed model is tested by comparison with the results of reputable published works. From here, the influences of the parameters: nonlocal elasticity, strain gradient, porosity, and boundary conditions are studied.

플렉셔 힌지 기반 6-자유도 초정밀 위치 결정 스테이지의 기구학 해석 (Kinematic Analysis of a 6-DOF Ultra-Precision Positioning Stage Based on Flexure Hinge)

  • 신현표;문준희
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.579-586
    • /
    • 2016
  • This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.

다관절 핑거 로봇의 파지 운동 모델과 제어에 관한 연구 (A Study on Model and Control of Pinching Motion for Multi-Fingered Robot)

  • 엄혁;최종환;김용석;양순용;이진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1060-1067
    • /
    • 2005
  • This paper attempts to derive and analyze the dynamic system of pinching a rigid object by means of two multi-degrees-of-freedom robot fingers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

  • PDF

원추형 코일스프링의 강성해석 (Analysis of Stiffness for Frustum-shaped Coil Spring)

  • 김진훈;이수종;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

새로운 요소분해방법에 의한 쉘 유한요소의 개발 (FORMULATION OF SHELL RINITE ELEMENTS BASED ON A NEW METHOD OF ELEMENT DECOMPISITION)

  • 이재영
    • 전산구조공학
    • /
    • 제1권1호
    • /
    • pp.67-78
    • /
    • 1988
  • 이 연구에서는 새로운 쉘요소분해의 방법을 정립하고, 이에 의거하여 간단하고, 효율성이 높고, 보편성이 큰 쉘 유한요소를 개발하고자 하였다. 실제의 요소는 개념적인 Translational Element와 Difference Element로 분해되며, 요소의 변위함수는 이 두 성분요소의 변위함수를 결합하여 얻는다. 요소분해의 기본가정을 달리함에 따라서 세가지의 기본형요소에 도달할 수 있다. 기본형요소를 보완하여 Locking현상을 제거하고 수렴성을 높히는 방안으로서 감착적분, 내용자유도의 추가 및 Mixed Fomulation을 검토하였으며, 요소의 Spurious Mode를 제어하는 방법을 고안하였다. 수치분석을 통해서 요소의 유효성과 효율성을 검정하였다.

  • PDF

유압펌프용 실린더 블록의 윤활 및 동특성 해석 (Analysis of Lubrication and Dynamic Characteristics of a Cylinder Block for Hydraulic Pump)

  • 안성용;임윤철;홍예선
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.99-107
    • /
    • 2004
  • Lubrication characteristics between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump play an important role in volumetric efficiency and durability of pump. In this paper, a finite element method is presented for the computation of the pressure distribution between a cylinder block and a valve plate for high speed bent-axis type hydraulic pump. Also, a Runge-Kutta method is applied to simulate the cylinder block dynamics of three-degrees of freedom motion. From the results of computation, we can draw two major conclusions. One is related to the fluid film characteristics between a cylinder block and a valve plate and the other is related to the average leakage that is determined by the pressure gradient and the clearance near the discharge port. The numerical results of cylinder block dynamics were compared with the experimental results using eddy-current type gap sensors those are fixed at a pump housing.

  • PDF

Parameter identification for nonlinear behavior of RC bridge piers using sequential modified extended Kalman filter

  • Lee, Kyoung Jae;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.319-342
    • /
    • 2008
  • Identification of the nonlinear hysteretic behavior of a reinforced concrete (RC) bridge pier subjected to earthquake loads is carried out based on acceleration measurements of the earthquake motion and bridge responses. The modified Takeda model is used to describe the hysteretic behavior of the RC pier with a small number of parameters, in which the nonlinear behavior is described in logical forms rather than analytical expressions. Hence, the modified extended Kalman filter is employed to construct the state transition matrix using a finite difference scheme. The sequential modified extended Kalman filter algorithm is proposed to identify the unknown parameters and the state vector separately in two steps, so that the size of the problem for each identification procedure may be reduced and possible numerical problems may be avoided. Mode superposition with a modal sorting technique is also proposed to reduce the size of the identification problem for the nonlinear dynamic system with multi-degrees of freedom. Example analysis is carried out for a continuous bridge with a RC pier subjected to earthquake loads in the longitudinal and transverse directions.