• Title/Summary/Keyword: Two-Body Heating Tool

Search Result 2, Processing Time 0.015 seconds

Thermal Design and Experimental Test of a High-Performance Hot Chuck for a Ultra Precision Flip-Chip Bonder (초정밀 플립칩 접합기용 고성능 가열기의 열적 설계 및 시험)

  • Lee Sang-Hyun;Park Sang-Hee;Ryu Do-Hyun;Han Chang-Soo;Kwak Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.957-965
    • /
    • 2006
  • A high-performance hot chuck is designed as a heating device for an ultra-precision flip-chip bonder with infrared alignment system. Analysis of design requirements for thermal performance leads to a radiative heating mechanism employing two halogen lamps as heating source. The heating tool is made of silicon carbide characterized by high thermal diffusivity and small thermal expansion coefficient. Experimental tests are performed to assess heat-up performance and temperature uniformity of the heating tool. It is revealed that the initial design of hot chuck results in a good heat-up speed but there exist a couple of troubles associated with control and integrity of the device. As a means to resolve the raised issues, a revised version of heating tool is proposed, which consists of a working plate made of silicon carbide and a supporting structure made of stainless steel. The advantages of this two-body heating tool are discussed and the improved features are verified experimentally.

Effect of Sintering Variables on the Microstructure and Mechanical Properties of the Gas Pressure Sintered $Si_3N_4$ ($Si_3N_4$ 가스압 소결체의 미세조직과 기계적 성질에 미치는 공정변수의 영향)

  • 박동수;김해두;정중희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.129-136
    • /
    • 1994
  • Si3N4 with 6w/o Y2O3 and 1.5w/o Al2O3 has been gas pressure sintered and its densification behavior and the effect of the sintering variables on the microstructure and mechanical properties were investigated. Densification rate was higher at temperature below 1775$^{\circ}C$ and between 187$0^{\circ}C$ and 195$0^{\circ}C$ than between 1775$^{\circ}C$ and 187$0^{\circ}C$. The faster densification at temperature between 187$0^{\circ}C$ and 195$0^{\circ}C$ was thought to be due to the increased amount of liquid phase resulting from the increased amount of Si3N4 dissolving in the liquid. $\beta$-Si3N4 and Y-disilicate at temperatures below 1775$^{\circ}C$, and only $\beta$-Si3N4 at 187$0^{\circ}C$ and above were detected by XRD analysis. Three different two-step schedules were employed to obtain sintered body with above 99% theoretical density and to investigate the effect of the sintering variables on the density, the microstructure and the mechanical properties of the sintered body. The sintered density did not change with the heating rate, and the microstructure became coarser as the temperature increased. The strength decreased with the width of $\beta$-Si3N4 grain, while the fracture toughness increased with the square root of it. A ceramic cutting tool made of the sintered body showed an uniform flank wear after the cutting test.

  • PDF