• Title/Summary/Keyword: Two stage refrigeration system

Search Result 58, Processing Time 0.03 seconds

Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander (팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Ryu, Chang-Gi;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.

Performance of A Three-Stage Condensation Heat Pump

  • Lee, Yoon-Hak;Jung, Dong-Soo;Kim, Chong-Bo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.55-68
    • /
    • 1999
  • In this study, computer simulation programs were developed for single-stage, two-stage, and three-stage condensation heat pumps and their performance with CFC11, HCFC123, HCFC141b was examined under the same external conditions. The results showed that the coefficient of performance(COP) of an optimized 'non-split type' three-stage condensation heat pump is 25-42% higher than that of a conventional single-stage heat pump. The increase in COP, however, differed among the fluids tested. The improvement in COP is largely due to the decrease in average LMTDs in condensers, which results in the decrease in thermodynamic irreversibility in heat exchange process. For the three-stage heat pump, the highest COP is achieved when the total condenser area is evenly distributed among the three condensers. For the two-stage heat pump, however, the optimum distribution of the total condenser area varies with an individual working fluid. For the three-stage system, 'splitting the condenser cooling water'for the use of intermediate and high pressure subcoolers helps increase the COP further. When the individual cooling water entering the intermediate and high pressure subcoolers is roughly 10% of the total condenser cooling water, the maximum COP is achieved showing roughly an 11% increase in COP as compared to that of the 'non-split type' heat pump.

  • PDF

A Study on the Operating Control of a Heat Pump System with Screw Compressors (스크류 열펌프 시스템의 운전제어 방안에 관한 연구)

  • Park, Jun-Tark;Lee, Young-Soo;Kim, Jiyoung;Chae, Kyu-Jung;Yang, Hee-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.168-172
    • /
    • 2013
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump system, which will be used for district heating and cooling. In this study, two issues of the system operating control were investigated. The first issue is the mode switching control from 1-stage to 2-stage. A stable 2-stage heating operation is guaranteed, only if the load-side water inlet temperature is over a certain value, where the 1-stage heating operation should be done first from a cold start. The second issue is oil level control. An oil shortage problem in the low stage compressor, which depends on the degree of suction superheat, was solved by a proper oil level control scheme.

Design of gas-gap thermal switch for reducing cooldown time of 2-stage cryocooler (2단 냉동기의 냉각시간 단축을 위한 기체-간극 열스위치 설계)

  • 김형진;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.35-38
    • /
    • 2000
  • A preliminary design of gas-gp thermal switch is presented to reduce the cooldown time of superconducting system conduction-cooled by a two-stage refrigerator without liquid cryogens. The switch connects thermally the first and the second stages (ON) to take advantage of the larger refrigeration capacity at the first stage during the beginning period. After the cryogenic temperature is reached, the switch should isolate thermally the two stages (OFF) in order to reduce the heat leak to the cold end. In this paper, a new concept for the performance index is introduced to evaluate the reduction of the cooldown time and the increase of the cooling load at the same time. In addition, the design of a gas-gap switch is discussed as a closed container of several staggered concentric tubes filled with gas, which is frozen at low temperatures for the shut-off of heat without any mechanical actuation. Some of the detailed features in the design is quantitative investigated by the gas convection model in the continuum or the rarefied gas region.

  • PDF

Development of machine learning model for reefer container failure determination and cause analysis with unbalanced data (불균형 데이터를 갖는 냉동 컨테이너 고장 판별 및 원인 분석을 위한 기계학습 모형 개발)

  • Lee, Huiwon;Park, Sungho;Lee, Seunghyun;Lee, Seungjae;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The failure of the reefer container causes a great loss of cost, but the current reefer container alarm system is inefficient. Existing studies using simulation data of refrigeration systems exist, but studies using actual operation data of refrigeration containers are lacking. Therefore, this study classified the causes of failure using actual refrigerated container operation data. Data imbalance occurred in the actual data, and the data imbalance problem was solved by comparing the logistic regression analysis with ENN-SMOTE and class weight with the 2-stage algorithm developed in this study. The 2-stage algorithm uses XGboost, LGBoost, and DNN to classify faults and normalities in the first step, and to classify the causes of faults in the second step. The model using LGBoost in the 2-stage algorithm was the best with 99.16% accuracy. This study proposes a final model using a two-stage algorithm to solve data imbalance, which is thought to be applicable to other industries.

An Experimental Study of The J-T Cryocooler with Mixed Refrigerant (혼합 냉매를 이용한 극저온 J-T 냉동기 관한 실험적 연구)

  • 이경수;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.64-68
    • /
    • 2001
  • An experimental study on the Joule-Thomson cryocooler with the mixed refrigerant (MR) is described in this paper, J-T refrigeration experiment was performed with a single stage regular air-conditioning compressor The mixed refrigerant in the experiment was composed of 75% mol fraction of $N_2$. 30% moi fraction of CH$_4$. 30% moi fraction of $C_2$H$_{6}$. 10% mot fraction of $C_3$H$_{8}$ and 15% mot fraction of iso-C$_4$H$_{10}$. Oil mist in the MR stream could be eliminated completely by the glass microfiber filter. Since a single stage compressor that had been designed thor R22 is not appropriate for high Pressure ratio of the mixed refrigerant especially during the transient period. two modifications were incorporated to regular J-T refrigeration cycle. First. a Portion of the MR was by-passed at the inlet of the heat exchanger and transferred directly to 7he suction of the compressor in the modified system. Second, a buffer volume was Prepared to change the mass flow rate of refrigerant. The pressure ratio in J-T expansion device was relieved at the beginning of the operation due to the by-Pass scheme. but it gradually decreased during the transient Process as some of the MR component condensed at low temperature. The buffer volume at the suction side was used to increase the MR gas density in the system after the transient cool-down period. Form the experiment with the modified system, the refrigerator could reach the lowest temperature of -152$^{\circ}C$ without cooling load. and about -15$0^{\circ}C$ with 5 W of cooling load . . . .

  • PDF

Performance Characteristics of a Mixed Refrigerant OTEC Power Cycle Using Hot Waste Water (온배수를 이용한 혼합냉매용 해양온도차 발전 사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Heo, Jeong-Ho;Ye, Byoung-Hyo;Kim, Hyun-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.102-107
    • /
    • 2013
  • In this paper, the performance analysis for evaporation capacity, total work and efficiency of the ocean thermal energy conversion(OTEC) power system using mixed refrigerant(R32,R152a) is conducted to find the effect of hot wasted water on OTEC power system. The system in this study is applied with two stage turbine, regenerator, cooler and separator on Organic Rankine Cycle. The commercial program HYSYS is used for the performance analysis. The main results were summarized as follows : The efficiency of the OTEC power cycle has a largely effect on the evaporation capacity and total work. As increasing temperature of heat source water, evaporator's capacity is decreased but total work increase. Otherwise, using hot wasted water bring effects not only increasing system efficiency but also declining evaporator's capacity. Thus With a thorough grasp of these effect, it is necessary to find way to use hot wasted water emitted by power plant and so on.

Fabrication of Three-Dimensional Micro Optical and Fluidic System Using Dual Stage Nanostereolithography Process (이중 스테이지를 이용한 대면적 3차원 광/유체 마이크로 디바이스 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.552-557
    • /
    • 2015
  • The nanostereolithography process using a femtosecond laser has been shown to have strong merits for the direct fabrication of 2D/3D micro structures. In addition, a femtosecond laser provides efficient tools for precise micromachining owing to the advantages of a small and feeble heat effect zone. In this paper, we report an effective fabrication process of 3D micro optical and fluidic devices using nanostereolithography process composed of a dual stage system. Process conditions for additive and subtractive fabrication are examined. The Piezo stage scanning system is used for 3D micro-fabrication in unit area of sub-mm scale, and the motor stage is employed in fabrication on the scale of several mm. The misalignment between the pizeo- and motor- stages is revised through rotational transformation of CAD data in the unit domain. Here, the effectiveness of the proposed process is demonstrated through examples using 3D optical and microfluidic structures.